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Abstract
Analytic solutions to the superfocusing modes of surface plasmon polaritons in
the wedge-shaped geometry are theoretically studied by solving the Helmholtz
wave equation for the magnetic field using quasi-separation of variables in
combination with perturbation methods. The solutions are described as a
product of radial and extended angular functions and are obtained for a lossless
metallic wedge and V-groove by determining the separation quantities that
satisfy the boundary conditions. For the metallic wedge and V-groove, we
show that the radial functions of the zeroth order are approximately described
by the imaginary Bessel and modified Whittaker functions, respectively, and
that the extended angular functions have odd and even symmetries, respectively,
for reflection in the central plane of the wedge-shaped geometry. Importantly,
we show that the wave numbers of superfocusing surface plasmon polaritons in
the metallic wedge and V-groove are clearly different in their radial dependence.

PACS numbers: 02.30.Mv, 41.20.Gz, 42.25.Bs, 78.20.−e, 78.20.Bh

1. Introduction

Superfocusing is a concept for waves of any nature to be confined to a length scale significantly
smaller than the diffraction limit of the focused waves. The superfocusing phenomenon is
being intensively investigated in the field of nano-optics [1] as a possible technique to focus
electromagnetic radiation in a region of the order of a few nanometers beyond the diffraction
limit of light and thereby causing an extraordinary enhancement of the electromagnetic
field. Superfocusing in optics is technically feasible with tapered metal tips, in which the
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surface plasmon polaritons (SPPs) [2] that freely propagate along the metallic surface are
gradually slowed down as they approach the tapered tip and stopped at the extremity where
they accumulate as localized SPPs. Plasmonic superfocusing provides a possible way of
optical confinement for practical applications such as optical nanolithography [3–7], nano-
optical integrated circuits [8–11], high-resolution near-field optical microscopy [12], high-
density optical data storage [13] and optical nanospectroscopy-based surface-enhanced Raman
scattering (SERS) [14–20]. Moreover, the investigations on another type of superfocusing,
acoustic superfocusing [21], have been started.

The possibility of plasmonic superfocusing, as far as we know, was theoretically studied
for the first time by Nerkararyan [22], who discussed the peculiarity of SPP propagation
in metallic wedge-shaped structures by approximately solving the Helmholtz wave equation
by separation of variables—this method cannot be applied to obtain an exact solution—
and suggested that the same conclusion could be reached by using the geometrical-optics
approximation (almost equivalently, the eikonal approximation). Until quite recently, the
problem of plasmonic superfocusing in tapered metal tips has been theoretically attacked
by either the separation of variables approximation [22–24] or the geometrical-optics
approximation [25–32]. Although these methods appear quite different, they reach the same
conclusion; therefore, they are approximations of the same level. Apart from analytic methods,
numerical methods based on finite-difference time-domain (FDTD) algorithms have been
frequently applied [9, 33–39], but these methods cannot provide as deep a physical insight
as analytic methods can do. In a preceding paper [40], as an analytic method for solving
the Helmholtz wave equation of plasmonic superfocusing, we proposed a new approach
based on quasi-separation of variables, which implies an incomplete separation of variables
in comparison with the conventional one. This new approach provides an approximation of a
higher level than the previous approaches of separation of variables and geometrical optics.

The present paper reexamines plasmonic superfocusing in a wedge-shaped geometry,
which was previously studied by Nerkararyan [22] and Gramotnev [26, 29], by using a new
approach based on quasi-separation of variables in combination with the perturbation method.
We investigate two wedge-shaped geometries, a lossless metallic wedge and V-groove, by
solving the zeroth- and first-order perturbation equations obtained when the solutions obtained
by quasi-separation of variables are assumed to satisfy the Helmholtz wave equation for
magnetic field. Physically important results and concepts can be obtained by solving the
zeroth-order perturbation equations. More accurate solutions can be obtained by solving the
first- and higher-order perturbation equations. In order to understand the solutions intuitively,
electric-field-line representations are very useful. Peculiarities of superfocusing SPPs are
briefly characterized by the dependences of the wave numbers on the distance from the wedge
apex, which are obtained by applying the Liouville–Green approximation [41, 42] to the zeroth-
order radial equations. Surprisingly, the new approach based on quasi-separation of variables
gives a new finding that the radial dependence of the wave numbers of the superfocusing SPPs
in the metallic wedge is clearly different from those of the superfocusing SPPs in the metallic
V-groove. This conclusion has never been reached by following the two previous approaches,
although it was suggested by numerical analysis based on an FDTD algorithm3.

The plan of this paper is as follows. In section 2, we begin by assuming solutions
based on quasi-separation of variables to the Helmholtz wave equation for the magnetic
field and introduce quasi-separation invariants, simply called separation quantities, in order
to separate the Helmholtz equation and obtain the radial and extended angular equations.

3 Superfocusing behavior in the metallic wedge was not observed as clearly as that for the metallic V-groove shown
in [9].
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The radial equations are linear, second-order, homogeneous, ordinary differential equations
(ODEs), while the angular equations are differential equations that appear unsolvable at first
glance. In section 3, we unify the radial equations separately described in the metallic
and dielectric regions by considering two asymptotic boundary conditions at infinite and
infinitesimal distances from the wedge apex. Accordingly, the separation quantities separately
described in the metallic and dielectric regions are also unified. In section 4, we explicitly
describe the boundary conditions for the unified radial and extended angular functions. In
section 5, we introduce a perturbation parameter to solve the extended angular equations by
means of perturbation methods and rewrite the extended angular equations, the unified radial
equation and the boundary conditions according to the order of the perturbation parameter.
In section 6, we discuss the zeroth-order perturbation equations for the metallic wedge and
V-groove. First, the symmetries of the extended angular functions with respect to the central
plane of the wedge-shaped geometry are determined by considering the existence conditions
for the unified separation quantities as positive real numbers. Second, the unified separation
quantities are numerically determined and fitted to suitable figure-of-merit functions used for
analytically solving the zeroth-order radial equations. Third, solutions of the zeroth-order
radial equations are approximately given by already-known special functions. Fourth, the
zeroth-order amplitude reflection coefficients for plasmonic superfocusing are obtained. In
sections 7 and 8, we discuss the first-order perturbation solutions for the metallic wedge and
V-groove, respectively. In section 9, we describe electric-field-line representation to visually
and intuitively express the solutions to the zeroth- and first-order perturbation equations. In
section 10, we express the wave numbers of superfocusing SPPs as analytic formulas. In
section 11, we briefly summarize the main points of this paper. In addition, four appendices
are included. In appendix A, we fully explain the asymptotic expansions for the modified
Whittaker functions used in section 10. In appendix B, we briefly explain the relations of
Whittaker functions used in section 6. In appendices C and D, we give the second-order
perturbation solutions for the metallic wedge and V-groove, respectively, which can be used
in future plasmonic superfocusing research.

2. Quasi-separation of variables applied to the wave equation for a magnetic field

We consider two wedge-shaped structures: a metallic wedge surrounded by dielectric and a
dielectric wedge surrounded by metal, which will simply be called the metallic wedge and the
metallic V-groove, respectively. As shown in figure 1, the cylindrical coordinates (ρ, φ, z)
can be used to describe an infinite wedge with an angle 2α (0 < α < π/2) and permittivity
ε1, surrounded by matter with permittivity ε2. In case where the imaginary parts of the
permittivities are ignored, we have the conditions ε1 < 0, ε2 > 0 for the metallic wedge and
the conditions ε1 > 0, ε2 < 0 for the metallic V-groove. We consider simple superfocusing of
SPPs with translational symmetry about the z-axis, whose magnetic field at time t at the point
located by the coordinate vector x is H(x, t) that is directed along the z-axis and depends on
ρ and φ; therefore, it is written as

H(x, t) = (0, 0,Hz(ρ, φ, t)). (1)

Beginning with the Maxwell equations in the absence of sources, we assume that the time
dependence of all the fields is given by e−iωt ; hence, we can write

Hz(ρ, φ, t) = Re[Hz(ρ, φ) e−iωt ]. (2)
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Figure 1. Geometry for a metallic wedge or V-groove where superfocusing of SPPs takes place at
the tip. α is half the wedge angle. ε1 and ε2 are the permittivities inside and outside the wedge,
respectively. Hz is the magnetic field of superfocusing SPPs with translational symmetry about
the z-axis. Eρ and Eφ are the electric fields of the radial and angular components, respectively,
induced by Hz.

The two Maxwell curl equations can be combined to give the Helmholtz wave equation
for the magnetic field in equation (2), namely,

1

ρ

∂

∂ρ

(
ρ

∂Hzj (ρ, φ)

∂ρ

)
+

1

ρ2

∂2Hzj (ρ, φ)

∂φ2
+ εj

ω2

c2
Hzj (ρ, φ) = 0, j = 1, 2 (3)

with the definition of the magnetic field Hz(ρ, φ) in the metallic and dielectric regions given
as

Hz(ρ, φ) =
{
Hz1(ρ, φ), |φ| � α

Hz2(ρ, φ), α � |φ| � π,
(4)

where ω is the angular frequency of interest and c is the velocity of light in vacuum. The
magnetic field Hz(ρ, φ) in equation (4) may be classified into even (+) or odd (−) symmetries
with respect to φ, because the geometrical structure in figure 1 is invariant for reflection in the
φ = 0 plane (ρ → ρ, φ → −φ, z → z) and the differential operator of the Helmholtz wave
equation (3) is even under the reflection transformation. As is done in the preceding paper
[40], we look for the solutions of the following form by using quasi-separation of variables:

Hzj (ρ, φ) = Rj(ρ)Qs
j (φ, ρ), j = 1, 2 (5)

with the boundary conditions

Qs

j
(α, ρ) = 1, j = 1, 2 (6)

to determine Qs
j
(φ, ρ) uniquely, where s indicates either the even (+) or odd (−) symmetry

with respect to φ. Substituting equation (5) into equation (3), we get

−
(

ρ

Rj (ρ)

∂

∂ρ

(
ρ

∂Rj (ρ)

∂ρ

)
+ εj

ω2

c2
ρ2

)

=

⎛
⎜⎜⎜⎜⎝

1

Qs
j
(φ, ρ)

∂2Qs
j
(φ, ρ)

∂φ2
+

ρ2

Qs
j
(φ, ρ)

∂2

∂ρ2
Qs

j
(φ, ρ)

+
2ρ2

Rj(ρ)Qs
j
(φ, ρ)

(
∂Rj (ρ)

∂ρ

)
∂Qs

j
(φ, ρ)

∂ρ
+

ρ

Qs
j
(φ, ρ)

∂Qs
j
(φ, ρ)

∂ρ

⎞
⎟⎟⎟⎟⎠ , j = 1, 2.

(7)
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Since the left side of equation (7) depends on ρ alone, while the right side depends on
both ρ and φ, both the sides must depend on ρ alone. Setting both the sides equal to ζj (ρ),
we obtain

ρ

Rj (ρ)

∂

∂ρ

(
ρ

∂Rj (ρ)

∂ρ

)
+ εj

ω2

c2
ρ2 = −ζj (ρ), j = 1, 2 (8)

and

1

Qs
j
(φ, ρ)

∂2Qs
j
(φ, ρ)

∂φ2
+

ρ2

Qs
j
(φ, ρ)

∂2

∂ρ2
Qs

j
(φ, ρ)

+
2ρ2

Rj(ρ)Qs
j
(φ, ρ)

(
∂Rj (ρ)

∂ρ

)
∂Qs

j
(φ, ρ)

∂ρ

+
ρ

Qs
j
(φ, ρ)

∂Qs
j
(φ, ρ)

∂ρ
= ζj (ρ), j = 1, 2. (9)

Here, ζj (ρ) for j = 1,2 are called quasi-separation invariants, or simply separation
quantities, in analogy with the separation constants in ordinary separation of variables.
Multiplying equation (8) by Rj(ρ)/ρ2 and rearranging terms, we find the following radial
equations:

∂2Rj(ρ)

∂ρ2
+

1

ρ

∂Rj (ρ)

∂ρ
+

(
ζj (ρ)

ρ2
+ εj

ω2

c2

)
Rj(ρ) = 0, j = 1, 2. (10)

Multiplying equation (9) by Qs
j
(φ, ρ) and rearranging terms, we obtain the following

extended angular equations:

∂2Qs
j
(φ, ρ)

∂φ2
− ζj (ρ)Qs

j
(φ, ρ) = −F s

j (φ, ρ), j = 1, 2 (11)

where

F s

j
(φ, ρ) = ρ2 ∂2

∂ρ2
Qs

j
(φ, ρ) +

2ρ2

Rj(ρ)

(
∂Rj (ρ)

∂ρ

)
∂Qs

j
(φ, ρ)

∂ρ
+ ρ

∂Qs
j
(φ, ρ)

∂ρ
, j = 1, 2.

(12)

Now, we can replace equation (3) with equations (10) and (11) that satisfy the boundary
conditions (6).

3. Unification of the radial equations

The radial equations (10), which are separately expressed in the two different regions j = 1, 2,
are considered for two limiting cases of ρ → 0 and ρ → ∞, in order to find a unified form of
these equations for SPPs propagating along a metal–dielectric interface.

For ρ → 0, since the conditions

|ζj (0)|
ρ2

� |εj |ω
2

c2
, j = 1, 2 (ρ → 0) (13)

are acceptable unless ζj (0) = 0, the radial equations (10) become

∂2Rj(ρ)

∂ρ2
+

1

ρ

∂Rj (ρ)

∂ρ
+

ζj (0)

ρ2
Rj(ρ) = 0, j = 1, 2 (ρ → 0), (14)

in which we lose the material terms εj for separately describing the radial equations (10) in the
two regions. This suggests that we should use a unified notation for the two different regions
in equation (14). Setting
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ζu(0) = ζj (0), j = 1, 2 (15)

Ru(ρ) = Rj(ρ), j = 1, 2 (ρ → 0) (16)

as the unified notation, we rewrite equations (14) as

∂2Ru(ρ)

∂ρ2
+

1

ρ

∂Ru(ρ)

∂ρ
+

ζu(0)

ρ2
Ru(ρ) = 0 (ρ → 0), (17)

which gives asymptotic solutions for Ru(ρ) as ρ → 0. Two nontrivial linearly independent
particular solutions to equation (17) are given by

Ru(ρ) = exp (iν ln ρ) , exp (−iν ln ρ) (ρ → 0) (18)

where

ν =
√

ζu(0). (19)

Remembering the time dependence e−iωt in equation (2), we see that exp (iν ln ρ) and
exp (−iν ln ρ) in equation (18) correspond to the outgoing and incoming waves, respectively,
involving a logarithmic phase singularity that can express the superfocusing process in the
limiting case ρ → 0 when ν in equation (19) is a positive real number,

ν > 0. (20)

For ρ → ∞, since the physical situation is considered to be the same as for SPPs in the
planar geometry, the radial equations (10) can be described with a unified notation for the two
regions in the form

Ru(ρ) = Rj(ρ), j = 1, 2 (ρ → ∞) (21)

and this equation satisfies the Sommerfeld radiation conditions [43]

lim
ρ→∞ Ru(ρ) = O

(
1√
ρ

)
, lim

ρ→∞
√

ρ

(
∂Ru(ρ)

∂ρ
± ikpRu(ρ)

)
= 0 (22)

where kp is the wave number of SPPs in the planar geometry, given by [44, 45]

kp = ω

c

√
ε1ε2

ε1 + ε2
(23)

with the SPP existence conditions

ε1ε2 < 0, (24)

ε1 + ε2 < 0 (25)

for permittivities ε1, ε2 being real numbers. The radiation conditions (22) yield two asymptotic
solutions

Ru(ρ) = exp(ikpρ)√
ρ

,
exp(−ikpρ)√

ρ
(ρ → ∞) , (26)

which are two nontrivial linearly independent particular solutions of the following ODE:

∂2Ru(ρ)

∂ρ2
+

1

ρ

∂Ru(ρ)

∂ρ
+

(
− 1

4ρ2
+ k2

p

)
Ru(ρ) = 0 (ρ → ∞) , (27)

or, equivalently,

∂2Ru(ρ)

∂ρ2
+

1

ρ

∂Ru(ρ)

∂ρ
+ k2

pRu(ρ) = 0 (ρ → ∞) (28)
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under the reasonable condition

k2
p � 1

4ρ2
(ρ → ∞) . (29)

Comparing equation (28) with the radial equations (10) in the limiting case ρ → ∞, we
see that equations (10) can be transformed from the radial equations (28) when the conditions

lim
ρ→∞

ζj (ρ)

ρ2
= β2

j , j = 1, 2 (30)

and

βj =
√

k2
p − εj

ω2

c2
, j = 1, 2 (31)

are satisfied.
Now, we are ready to look for a unified form of the radial equations (10) for superfocusing

SPPs. The unified form can be obtained from the inversion process of finding the limiting
equations (17) and (28) as ρ → 0 and ρ → ∞, respectively. It is easy to find a simple
candidate of the form

∂2Ru(ρ)

∂ρ2
+

1

ρ

∂Ru(ρ)

∂ρ
+

(
k2
p +

ζu(0)

ρ2

)
Ru(ρ) = 0 (0 � ρ < ∞) , (32)

which approaches equations (17) and (28) under the reasonable conditions ζu(0)/ρ2 � k2
p as

ρ → 0 and ζu(0)/ρ2 � k2
p as ρ → ∞, respectively. These algebraic procedures indicate that

a more general candidate is

∂2Ru(ρ)

∂ρ2
+

1

ρ

∂Ru(ρ)

∂ρ
+

(
k2
p +

ζu(0) + A(ρ)

ρ2

)
Ru(ρ) = 0 (0 � ρ < ∞) (33)

where A(ρ) is arbitrary only if

lim
ρ→0

A(ρ) = 0, lim
ρ→∞ A(ρ)/ρ2 = 0. (34)

By setting

A(ρ) = ζu(ρ) − ζu(0), (35)

we can rewrite equation (33) as

∂2Ru(ρ)

∂ρ2
+

1

ρ

∂Ru(ρ)

∂ρ
+

(
k2
p +

ζu(ρ)

ρ2

)
Ru(ρ) = 0 (0 � ρ < ∞) (36)

where the condition

lim
ρ→∞ ζu(ρ)/ρ2 = 0 (37)

is satisfied from equations (34) and (35). Comparing equation (36) with the radial
equations (10), we find that the unification conditions

ζj (ρ)

ρ2
= β2

j +
ζu(ρ)

ρ2
, j = 1, 2 (0 � ρ < ∞) (38)

allow the radial functions in equation (10) to be unified as follows:

Ru(ρ) = Rj(ρ), j = 1, 2 (0 � ρ < ∞) . (39)

Equation (36) is the modified form of the radial equations (10) for superfocusing SPPs, in
which the separation quantities and the radial functions are described in the unified notation
for the metallic and dielectric regions. Further discussion on the unified radial equation (36)
would require more detailed information on the unified separation quantity ζu(ρ), which can
be determined from the boundary conditions.
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4. Boundary conditions for the radial and extended angular functions

Here, as a preparation for considering the extended angular equations (11), we examine the
boundary conditions for the radial and extended angular functions. Let us first investigate
the radial function. In the preceding section, we simplified the original radial equations (10)
to the unified radial equation (36), which is a linear, second-order, homogeneous ODE that
possesses two nontrivial linearly independent particular solutions as a fundamental system of
solutions. Indeed, the boundary conditions of the unified radial function depend on a situation
of interest such as the incoming or outgoing solutions for ρ → 0 or ρ → ∞. In particular, a
special boundary condition for the superfocusing process is the incoming solution for ρ → 0
that expresses an extraordinary enhancement of the electromagnetic field coming from the
outside; it is obtained from equation (18) and is given by

Ru(ρ) = H0 exp(−iν ln ρ) (ρ → 0), (40)

where H0 is the complex amplitude of the magnetic field to be determined by the initial
conditions. We shall choose equation (40) to be a boundary condition of the unified radial
function.

To obtain the boundary conditions of the angular functions, we can use the continuity of the
radial electric field at the metal–dielectric surface (φ = α). The Ampère–Maxwell equation
in the absence of current density allows us to describe the electrical field as a function of
the magnetic field. From this equation, together with the existence of the magnetic field
H(x, t) = (0, 0,Hz (ρ, φ, t)) assumed in equation (1), we see that the electric field E(x, t)

can be written as

E(x, t) = (Eρ(ρ, φ, t), Eφ(ρ, φ, t), 0) (41)

where, with the following harmonic time dependence

Eρ(ρ, φ, t) = Re[Eρ(ρ, φ) e−iωt ], (42)

Eφ(ρ, φ, t) = Re[Eφ(ρ, φ) e−iωt ], (43)

and in terms of their following explicit expressions in the two regions:

Eρ (ρ, φ) =
{
Eρ1 (ρ, φ) , |φ| � α

Eρ2 (ρ, φ) , α � |φ| � π,
(44)

Eφ (ρ, φ) =
{
Eφ1 (ρ, φ) , |φ| � α

Eφ2 (ρ, φ) , α � |φ| � π,
(45)

we find that

Eρj (ρ, φ) = ic

ωεj

1

ρ

∂

∂φ
Hzj (ρ, φ) , j = 1, 2, (46)

Eφj (ρ, φ) = − ic

ωεj

∂

∂ρ
Hzj (ρ, φ) , j = 1, 2. (47)

Substituting equation (5) into equation (46), and using equation (39), we see that the radial
electric fields become

Eρj (ρ, φ) = ic

ωεj

Ru(ρ)

ρ

∂

∂φ
Qs

j
(φ, ρ), j = 1, 2, (48)

8
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which are continuous at the metal–dielectric surface (φ = α). Hence, we find the following
expression for the boundary conditions of the angular functions:

1

ε1
lim

φ→α−0

∂

∂φ
Qs

1(φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Qs

2(φ, ρ). (49)

Note that the continuity of the radial electric field on the other metal–dielectric surface
(φ = −α) is automatically satisfied when the magnetic field has either even (+) or odd (−)
symmetries with respect to φ.

5. Application of perturbation methods for solving the extended angular equations

From equations (38) and (39), we see that the extended angular equations (11) and (12)
simplify to

∂2Qs
j
(φ, ρ)

∂φ2
− {(βjρ)2 + ζu(ρ)}Qs

j
(φ, ρ) = −F s

j
(φ, ρ), j = 1, 2 (50)

with

F s

j
(φ, ρ) = ρ2 ∂2

∂ρ2
Qs

j
(φ, ρ) +

2ρ2

Ru(ρ)

(
∂Ru(ρ)

∂ρ

)
∂Qs

j
(φ, ρ)

∂ρ
+ ρ

∂Qs
j
(φ, ρ)

∂ρ
, j = 1, 2.

(51)

In spite of this simplification, we still face difficulty with the fact that equations (50) and
(51) include the as-yet-to-be-determined unified radial function Ru(ρ). Moreover, we still face
a basic difficulty in solving such a complicated partial differential equation (PDE) containing
first- and second-order partial derivatives with respect to ρ and a second-order partial derivative
with respect to φ. In order to overcome these difficulties, let us apply perturbation methods
[46] to the extended angular equations (50), treating F s

j
(φ, ρ) on the right side as a perturbing

term because the left side can be solved exactly. According to the perturbation theory, we
introduce the perturbation parameter 0 � δ � 1 into equations (50) and consider the perturbed
equation

∂2Qs
j
(φ, ρ)

∂φ2
− {(βjρ)2 + ζu(ρ)}Qs

j
(φ, ρ) = −δF s

j
(φ, ρ), j = 1, 2, (52)

which should have a solution of the form

Qs

j
(φ, ρ) = Q

s(0)
j (φ, ρ) + δQ

s(1)
j (φ, ρ) + δ2Q

s(2)
j (φ, ρ) + · · · , j = 1, 2. (53)

Accordingly, ζu(ρ) and Ru(ρ) should be described as

ζu(ρ) = ζ (0)
u (ρ) + δζ (1)

u (ρ) + δ2ζ (2)
u (ρ) + · · · (54)

and

Ru(ρ) = R(0)
u (ρ) + δR(1)

u (ρ) + δ2R(2)
u (ρ) + · · · , (55)

respectively. Substituting equations (53)–(55) into equation (52), and setting the coefficients
of the powers of δ equal to each other, we have a system of equations for Q

s(0)
j (φ, ρ),

Q
s(1)
j (φ, ρ), Q

s(2)
j (φ, ρ), . . ., in the power series (53):

Coefficient of δ0

∂2Q
s(0)
j (φ, ρ)

∂φ2
− {ηj (ρ)}2Q

s(0)
j (φ, ρ) = 0, j = 1, 2 (56)

9
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with the newly defined function

ηj (ρ) =
√

(βjρ)2 + ζ
(0)
u (ρ), j = 1, 2. (57)

Coefficient of δ1

∂2Q
s(1)
j (φ, ρ)

∂φ2
− {ηj (ρ)}2Q

s(1)
j (φ, ρ) = −N

s(1)
j (φ, ρ), j = 1, 2 (58)

with the nonhomogeneous term

N
s(1)
j (φ, ρ) = ρ2 ∂2

∂ρ2
Q

s(0)
j (φ, ρ) +

2ρ2

R
(0)
u (ρ)

(
∂R(0)

u (ρ)

∂ρ

)
∂Q

s(0)
j (φ, ρ)

∂ρ

+ ρ
∂Q

s(0)
j (φ, ρ)

∂ρ
− ζ (1)

u (ρ)Q
s(0)
j (φ, ρ), j = 1, 2. (59)

Coefficient of δ2

∂2Q
s(2)
j (φ, ρ)

∂φ2
− {ηj (ρ)}2Q

s(2)
j (φ, ρ) = −N

s(2)
j (φ, ρ), j = 1, 2 (60)

with the nonhomogeneous term

N
s(2)
j (φ, ρ) = ρ2 ∂2

∂ρ2
Q

s(1)
j (φ, ρ) +

2ρ2

R
(0)
u (ρ)

(
∂R(0)

u (ρ)

∂ρ

)
∂Q

s(1)
j (φ, ρ)

∂ρ

+
2ρ2

R
(0)
u (ρ)

(
∂R(1)

u (ρ)

∂ρ

)
∂Q

s(0)
j (φ, ρ)

∂ρ
− 2ρ2R(1)

u (ρ){
R

(0)
u (ρ)

}2

(
∂R(0)

u (ρ)

∂ρ

)
∂Q

s(0)
j (φ, ρ)

∂ρ

+ ρ
∂Q

s(1)
j (φ, ρ)

∂ρ
− ζ (1)

u (ρ)Q
s(1)
j (φ, ρ) − ζ (2)

u (ρ)Q
s(0)
j (φ, ρ), j = 1, 2.

(61)

Setting equation (53) for φ = α equal to the one from equation (6), we have

Qs

j
(α, ρ) = Q

s(0)
j (α, ρ) + δQ

s(1)
j (α, ρ) + δ2Q

s(2)
j (α, ρ) + · · · = 1, j = 1, 2, (62)

which lead to the following Dirichlet boundary conditions [47]:

Q
s(0)
j (α, ρ) = 1, Q

s(1)
j (α, ρ) = 0, Q

s(2)
j (α, ρ) = 0, . . . , j = 1, 2, (63)

by setting the coefficients of the powers of δ equal to each other in equation (62). In a similar
manner, substituting equation (53) into equation (49), and setting the coefficients of the powers
of δ equal to each other, we have the following Neumann boundary conditions [47]:
1

ε1
lim

φ→α−0

∂

∂φ
Q

s(n)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

s(n)
2 (φ, ρ), n = 0, 1, 2, . . . . (64)

Note that imposing both the Dirichlet (63) and Neumann boundary conditions (64) is
referred to as the Cauchy boundary conditions [47]; that is, we specify the values and normal
derivatives of the functions Q

s(0)
j (φ, ρ), Q

s(1)
j (φ, ρ), Q

s(2)
j (φ, ρ), . . . in the power series (53)

along the metal–dielectric boundary (φ = α).
Perturbation methods should be also applied to the unified radial equation (36).

Substituting equations (54) and (55) into the unified radial equation (36) and equating the
coefficients of like powers of δ on both the sides, we have the following:

Coefficient of δ0

∂2R(0)
u (ρ)

∂ρ2
+

1

ρ

∂R(0)
u (ρ)

∂ρ
+

(
k2
p +

ζ (0)
u (ρ)

ρ2

)
R(0)

u (ρ) = 0 (0 < ρ < ∞) . (65)

10
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Coefficient of δ1

∂2R(1)
u (ρ)

∂ρ2
+

1

ρ

∂R(1)
u (ρ)

∂ρ
+

(
k2
p +

ζ (0)
u (ρ)

ρ2

)
R(1)

u (ρ)

= −ζ (1)
u (ρ)

ρ2
R(0)

u (ρ) (0 < ρ < ∞) . (66)

Coefficient of δ2

∂2R(2)
u (ρ)

∂ρ2
+

1

ρ

∂R(2)
u (ρ)

∂ρ
+

(
k2
p +

ζ (0)
u (ρ)

ρ2

)
R(2)

u (ρ)

= −ζ (1)
u (ρ)

ρ2
R(1)

u (ρ) − ζ (2)
u (ρ)

ρ2
R(0)

u (ρ) (0 < ρ < ∞) . (67)

Substituting equation (55) into equation (40), and setting the coefficients of the powers
of δ equal to each other, we have the following Dirichlet boundary conditions:

R(0)
u (ρ) = H0 exp(−iν ln ρ) (ρ → 0), (68)

R(1)
u (ρ) = R(2)

u (ρ) = · · · = 0 (ρ → 0). (69)

Summing up the points we have discussed in this section, we arrive at the following
sequence of problems from which we can find the function sets

{
ζ (n)
u (ρ), R(n)

u (ρ),Q
s(n)
1 (φ, ρ),

Q
s(n)
2 (φ, ρ)

}
for n = 0, 1, 2, . . . in sequence:

P0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2Q
s(0)
j (φ, ρ)

∂φ2
− {ηj (ρ)}2Q

s(0)
j (φ, ρ) = 0, j = 1, 2

Q
s(0)
j (α, ρ) = 1, j = 1, 2

1

ε1
lim

φ→α−0

∂

∂φ
Q

s(0)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

s(0)
2 (φ, ρ)

∂2R(0)
u (ρ)

∂ρ2
+

1

ρ

∂R(0)
u (ρ)

∂ρ
+

(
k2
p +

ζ (0)
u (ρ)

ρ2

)
R(0)

u (ρ) = 0

R(0)
u (ρ)

∣∣
ρ→0 ∼ H0 exp(−iν ln ρ),

(70)

P1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2Q
s(1)
j (φ, ρ)

∂φ2
− {ηj (ρ)}2Q

s(1)
j (φ, ρ) = −N

s(1)
j (φ, ρ), j = 1, 2

Q
s(1)
j (α, ρ) = 0, j = 1, 2

1

ε1
lim

φ→α−0

∂

∂φ
Q

s(1)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

s(1)
2 (φ, ρ)

∂2R(1)
u (ρ)

∂ρ2
+

1

ρ

∂R(1)
u (ρ)

∂ρ
+

(
k2
p +

ζ (0)
u (ρ)

ρ2

)
R(1)

u (ρ) = −ζ (1)
u (ρ)

ρ2
R(0)

u (ρ)

R(1)
u (ρ)

∣∣
ρ→0 = 0,

(71)

11
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P2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2Q
s(2)
j (φ, ρ)

∂φ2
− {ηj (ρ)}2Q

s(2)
j (φ, ρ) = −N

s(2)
j (φ, ρ), j = 1, 2

Q
s(2)
j (α, ρ) = 0, j = 1, 2

1

ε1
lim

φ→α−0

∂

∂φ
Q

s(2)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

s(2)
2 (φ, ρ)

∂2R(2)
u (ρ)

∂ρ2
+

1

ρ

∂R(2)
u (ρ)

∂ρ
+

(
k2
p +

ζ (0)
u (ρ)

ρ2

)
R(2)

u (ρ)

= −ζ (1)
u (ρ)

ρ2
R(1)

u (ρ) − ζ (2)
u (ρ)

ρ2
R(0)

u (ρ)

R(1)
u (ρ)

∣∣
ρ→0 = 0.

(72)

Finally, it is useful to indicate that as ρ → 0 the perturbation term in the perturbed
equation (52) vanishes; that is,

lim
ρ→0

F s

j
(φ, ρ) = 0, j = 1, 2, (73)

which can be verified by calculating equations (51) under the condition that Ru(ρ) (ρ → 0)
has a logarithmic phase singularity in equation (18) and Qs

j (φ, ρ) remains finite at ρ = 0.
Then, from equation (53), we find that

Qs
j (φ, 0) = Q

s(0)
j (φ, 01), j = 1, 2, (74)

Q
s(1)
j (φ, 0) = Q

s(2)
j (φ, 0) = · · · = 0, j = 1, 2 (75)

and from equation (54), we find that

ζu(0) = ζ (0)
u (0), (76)

ζ (1)
u (0) = ζ (2)

u (0) = · · · = 0. (77)

Substituting equation (76) into equation (19), we obtain

ν =
√

ζ
(0)
u (0) =

√
ζu(0). (78)

6. Zeroth-order approximate solutions

We are to solve problem P0 (70), which is composed of the zeroth-order perturbation equations
that give the fundamental properties of the superfocusing modes in the metallic wedge and
V-groove. In the metallic wedge, it will be shown that only the odd symmetry with respect to
φ is allowed and that the zeroth-order unified radial equation closely approximates the Bessel
differential equation of an imaginary order. In contrast, for the metallic V-groove, it will be
shown that only the even symmetry is allowed and that the zeroth-order unified radial equation
roughly approximates the modified form of the Whittaker differential equation.

6.1. Extended angular functions of the zeroth order

The zeroth-order extended angular equations (56) have two nontrivial linearly independent
particular solutions,

cosh{φηj (ρ)}, sinh{φηj (ρ)}, j = 1, 2, (79)

12
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so that by taking account of the boundary conditions (6), we obtain a solution for the odd (−)
symmetry with respect to φ, i.e.,

Q
−(0)
1 (φ, ρ) = sinh{φη1(ρ)}/sinh{αη1(ρ)}, 0 � |φ| � α, (80)

Q
−(0)
2 (φ, ρ) = sgn(φ)sinh{(π − |φ|)η2(ρ)}/sinh{(π − α)η2(ρ)}, α � |φ| � π (81)

and a solution for the even (+) symmetry with respect to φ, i.e.,

Q
+(0)
1 (φ, ρ) = cosh{φη1(ρ)}/cosh{αη1(ρ)}, 0 � |φ| � α, (82)

Q
+(0)
2 (φ, ρ) = cosh{(π − |φ|)η2(ρ)}/ cosh{(π − α)η2(ρ)}, α � |φ| � π. (83)

6.2. Characteristic equations for determining the unified separation quantity of the zeroth
order

Substituting equations (80) and (81) into the boundary condition (64), we obtain

η1(ρ)

ε1
coth{αη1(ρ)} = −η2(ρ)

ε2
coth{(π − α)η2(ρ)} (84)

or
tanh{αη1(ρ)}

tanh{(π − α)η2(ρ)} +
ε2η1(ρ)

ε1η2(ρ)
= 0 (odd symmetry), (85)

which is the characteristic equation to determine the zeroth-order unified separation quantity
ζ (0)
u (ρ) for the odd symmetry.

In contrast, substituting equations (82) and (83) into the boundary condition (64), we get

η1(ρ)

ε1
tanh{αη1(ρ)} = −η2(ρ)

ε2
tanh{(π − α)η2(ρ)} (86)

or
tanh{αη1(ρ)}

tanh{(π − α)η2(ρ)} +
ε1η2(ρ)

ε2η1(ρ)
= 0 (even symmetry), (87)

which is the characteristic equation for the even symmetry.
Symmetry properties of the superfocusing modes in the wedge-shaped geometry can be

easily obtained by considering characteristic equations (85) and (87) at ρ = 0:

tanh
{
α

√
ζ

(0)
u (0)

}
tanh

{
(π − α)

√
ζ

(0)
u (0)

} +
ε2

ε1
= 0 (odd symmetry), (88)

tanh
{
α

√
ζ

(0)
u (0)

}
tanh

{
(π − α)

√
ζ

(0)
u (0)

} +
ε1

ε2
= 0 (even symmetry), (89)

which are the same in the first term but different in the second term. The first term in equations
(88) and (89) satisfies the condition

0 <
tanh

{
α

√
ζ

(0)
u (0)

}
tanh

{
(π − α)

√
ζ

(0)
u (0)

} < 1 (90)

from the inequality

0 < tanh
{
α

√
ζ

(0)
u (0)

}
< tanh

{
(π − α)

√
ζ

(0)
u (0)

} (
0 < α <

π

2

)
(91)

13
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for
√

ζ
(0)
u (0) being a positive real number, which, from equations (20) and (78), is satisfied

when the superfocusing takes place. Substituting equation (90) into equations (88) and (89),
we have the conditions

−1 <
ε2

ε1
< 0 (odd symmetry), (92)

−1 <
ε1

ε2
< 0 (even symmetry), (93)

which can be respectively transformed using equations (24) and (25) into the forms

0 < ε2 < −ε1 (odd symmetry), (94)

0 < ε1 < −ε2 (even symmetry). (95)

Equations (94) and (95) tell us the symmetry properties of the superfocusing mode in
which the odd (−) and even (+) symmetries are, respectively, allowed for the metallic wedge
(ε1 < 0, ε2 > 0) and the metallic V-groove (ε1 > 0, ε2 < 0). Therefore, we find that,
in determining the zeroth-order unified separation quantity, the characteristic equation of
odd symmetry (85) is used for the metallic wedge, while the characteristic equation of even
symmetry (87) is used for the metallic V-groove.

6.3. Approximately analytic determination of the zeroth-order unified separation quantity
based on a figure-of-merit function

A minutely detailed description of the magnetic fields for superfocusing needs not a numeric
but an analytic determination of the zeroth-order unified separation quantity ζ (0)

u (ρ) because of
the characteristic equations (85) and (87). Obviously, it is very difficult to express ζ (0)

u (ρ) by
solving equations (85) and (87) by using ordinary methods in terms of already-known analytic
functions; however, it is easily possible to estimate ζ (0)

u (ρ) fairly accurately by carefully
choosing a figure-of-merit function whose parameters can be determined by fitting it to a
numerically calculated curve from equations (85) or (87) with specific values of ε1, ε2 and α.

We will use the metallic permittivity εm = −20 and the dielectric permittivity εd = 1
as specific values of ε1 and ε2 in producing numerically calculated curves. We choose the
specific values by assuming that the dielectric matter is air with a permittivity of εd = 1 and
the metallic matter is gold with a permittivity of εm = −20.6+1.57i at the 750 nm wavelength;
the imaginary part of εm is much smaller than the real part and thus can be ignored for the
sake of simplicity.

Figure 2 shows ζ (0)
u (0) as a function of the wedge angle 2α for the metallic wedge and

V-groove, as calculated by

tanh
{
α

√
ζ

(0)
u (0)

}
tanh

{
(π − α)

√
ζ

(0)
u (0)

} +
εd

εm

= 0, (96)

which was obtained from equations (88) and (89) for the metallic wedge (ε1 = εm, ε2 = εd )
and the metallic V-groove (ε1 = εd , ε2 = εm). Although it seems surprising that ζ (0)

u (0) is
common to the metallic wedge and V-groove, this fact is implicit in Nerkararyan [22]. The
dominant characteristics of figure 1 are that ζ (0)

u (0) is positive when 2α � 17.14 and ζ (0)
u (0)

increases as the cone angle 2α decreases. With equations (18) and (19), this means that the
superfocusing effects become stronger as the cone angle 2α decreases. Specific values in
figure 1 are listed in table 1.
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Figure 2. Numerical calculations of the zeroth-order unified separation quantities at ρ = 0,
ζ

(0)
u (0), as a function of wedge angle 2α when εm = −20 and εd = 1 are used in equation (96).

Note that ζ
(0)
u (0) is equal to ζu(0) and ν2 from equation (78).

Table 1. Values of the solution ζ
(0)
u (0) in equation (96) for specific wedge angles 2α with εd = 1

and εm = −20. From equation (78), ν equals
√

ζ
(0)
u (0).

2α (degrees) ζ
(0)
u (0) ν

1 32.88 5.734
3 3.654 1.912
5 1.311 1.145

10 0.2810 0.5301
15 0.05128 0.2265

From here onwards, to avoid a clash of notations between the metallic wedge and V-
groove expressions of ζ (0)

u (ρ), we use ζ̂ (0)
u (ρ) and ζ̃ (0)

u (ρ) for the metallic wedge and V-groove,
respectively. Generally, in the case of a clash of notation, let us use a circumflex (ˆ) for the
metallic wedge and a tilde (˜) for the metallic V-groove. However, ζ̂ (0)

u (0) and ζ̃ (0)
u (0) are

exceptional; they can both be replaced by ζ (0)
u (0) as determined by equation (96). Since ζ (0)

u (0)

is well described by figure 2, we will freely replace ζ̂ (0)
u (0) and ζ̃ (0)

u (0) with ζ (0)
u (0).

In the metallic wedge, ζ̂ (0)
u (ρ) is determined by solving equation (85) under the conditions

ε1 = εm and ε2 = εd . In figure 3, the solid lines show ζ̂ (0)
u (ρ)/ζ (0)

u (0) for specific wedge
angles as a function of ρ/λ0, where λ0 (=2πc/ω) is the wavelength in vacuum; the broken
lines are fitting curves for the respective solid lines and they are consequently unclear due to
their overlap with the solid lines. In the curve fitting, we choose a figure-of-merit function
with two parameters, p1 and p2, of the form

ζ̂ (0)
u (ρ)

ζ
(0)
u (0)

= exp

[
(p1λ0)

(
(ρ/λ0) + (p2/λ0)

{
exp

(
− (ρ/λ0)

(p2/λ0)

)
− 1

})]
= exp[p1(ρ + p2{exp(−ρ/p2) − 1})]. (97)

Here, the term p1(ρ + p2 {exp(−ρ/p2) − 1}) is the same as the one describing free-fall
motion with air resistance proportional to the velocity, behaving as a square increase around
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Figure 3. Numerical calculations of the zeroth-order unified separation quantities ζ̂
(0)
u (ρ) for the

metallic wedge as a function of the radius ρ for various wedge angles 2α when ε1 = −20 and
ε2 = 1 are used in equation (85). For convenience of explanation, ζ̂ (0)

u (ρ)/ζ
(0)
u (0) is shown, where

ζ̂
(0)
u (0) = ζ

(0)
u (0). Broken lines are fitting curves based on equation (97) and are not clearly visible

because of their overlap with the solid lines that represent the results of numerical calculations.

Table 2. Values of the parameters in equation (97) obtained by fitting the curves in figure 3. The
parameters are normalized by the wavelength in vacuum, λ0.

2α (degrees) p1λ0 p2/λ0

1 −1.551 36.45
3 −2.045 5.109
5 −2.961 2.620

10 −8.752 2.329
15 −15.67 2.381

ρ and a linear increase for larger ρ. Table 2 shows several values of p1 and p2 normalized to
the wavelength in vacuum, λ0, in equation (97) for specific wedge angles.

In the metallic V-groove, ζ̃ (0)
u (ρ) is determined by solving equation (87) under the

conditions ε1 = εd and ε2 = εm. In figure 4(a), the solid lines show ζ̃ (0)
u (ρ)/ζ (0)

u (0) for
specific wedge angles as a function of ρ/λ0. Their behavior is very different from the behavior
of the solid lines plotting ζ̂ (0)

u (ρ)/ζ (0)
u (0) in figure 3. In order to find a figure-of-merit function

suitable for ζ̃ (0)
u (ρ), we draw a new graph in figure 4(b) showing

{
ζ̃ (0)
u (ρ) − ζ̂ (0)

u (ρ)
}/

ζ (0)
u (0)

as a function of ρ/λ0, where ζ̂ (0)
u (ρ)

/
ζ (0)
u (0) is already shown in figure 3. All the solid lines

in figure 4(b) approach zero as ρ → 0 and ρ → ∞. These properties allow us to choose a
figure-of-merit function with three parameters, q1, q2 and q3, of the form

ζ̃ (0)
u (ρ) − ζ̂ (0)

u (ρ)

ζ
(0)
u (0)

= (q1λ0) (ρ/λ0) exp
[−(q2λ0)(ρ/λ0) − (q3λ

2
0

)
(ρ/λ0)

2
]

= q1ρ exp[−q2ρ − q3ρ
2] (98)

for fitting the solid lines in figure 4(b). The fitting curves are shown in figure 4(b) as broken
lines, which overlap with the solid lines. Table 3 shows several values of q1, q2 and q3

normalized to the wavelength in vacuum, λ0, in equation (98) for specific wedge angles.
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Figure 4. Numerical calculations of the zeroth-order unified separation quantities ζ̃
(0)
u (ρ) for the

metallic V-groove as a function of the radius ρ for various wedge angles 2α when ε1 = 1 and
ε2 = −20 are used in equation (87). Part (a) shows ζ̃

(0)
u (ρ)/ζ

(0)
u (0), where ζ̃

(0)
u (0) = ζ

(0)
u (0). For

convenience of fitting the curves, part (b) shows {ζ̃ (0)
u (ρ) − ζ̂

(0)
u (ρ)}/ζ (0)

u (0) as a solid line, where
ζ̂

(0)
u (0)/ζ

(0)
u (0) is shown in figure 3. Broken lines in part (b) are fitting curves based on equation

(98) and are not clearly visible because of their overlap with the solid lines.

Table 3. Values of the parameters in equation (98) obtained by fitting the curves in figure 4(b).
The parameters are normalized by the wavelength in vacuum, λ0.

2α (degrees) q1λ0 q2λ0 q3λ
2
0

1 5.115 0.008 449 0.000 027 05
3 15.25 0.024 90 0.000 2499
5 25.66 0.042 25 0.000 6763

10 59.86 0.084 49 0.002 705
15 218.7 0.126 7 0.006 087

6.4. Unified radial functions of the zeroth order for the metallic wedge

In the metallic wedge, the zeroth-order unified separation quantity ζ̂ (0)
u (ρ) determined by

equation (85) is fairly accurately estimated by the figure-of-merit function in equation (97).
However, even by using this quantity, we cannot solve the zeroth-order unified radial
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equation (65) as an already-known differential equation. Nevertheless, we can show that the
zeroth-order unified radial equation (65) closely approximates the imaginary Bessel differential
equation [48] under the quasi-constant approximation condition. For the metallic wedge, let
us write the zeroth-order unified radial equation (65) as

∂2R̂(0)
u (ρ)

∂ρ2
+

1

ρ

∂R̂(0)
u (ρ)

∂ρ
+

(
k2
p +

ζ̂ (0)
u (ρ)

ρ2

)
R̂(0)

u (ρ) = 0. (99)

Defining the modified wave number of SPPs in the planar geometry as

k̂mp(ρ) =
√

k2
p +

ζ̂
(0)
u (ρ) − ζ

(0)
u (0)

ρ2
, (100)

we can write equation (99) as

∂2R̂(0)
u (ρ)

∂ρ2
+

1

ρ

∂R̂(0)
u (ρ)

∂ρ
+

(
{k̂mp(ρ)}2 +

ζ (0)
u (0)

ρ2

)
R̂(0)

u (ρ) = 0, (101)

which can be approximately transformed into a Bessel differential equation if k̂mp(ρ) varies
smoothly and is approximately constant. This assumption is acceptable when the characteristic
function

χ(ρ) = ρ

k̂mp(ρ)

∂

∂ρ
k̂mp(ρ) (102)

satisfies the condition

|χ(ρ)| � 1 (103)

because k̂mp(ρ) can be treated as a quasi-constant in the variable transformation r̂ = ρk̂mp(ρ)

as follows:
∂

∂ρ
= ∂r̂

∂ρ

∂

∂r̂
= k̂mp(ρ) {1 + χ(ρ)} ∂

∂r̂
≈ k̂mp(ρ)

∂

∂r̂
, (104)

in which equation (101) closely approximates the imaginary Bessel differential equation

∂2R̂(0)
u

∂r̂2
+

1

r̂

∂R̂(0)
u

∂r̂
+

{
1 − (iν)2

r̂2

}
R̂(0)

u = 0 (105)

for ν =
√

ζ
(0)
u (0) in equation (78). In our numerical calculations, condition (103) is satisfied

as can be seen in figure 5; hence, these transformations are absolutely valid.
The general solution of equation (105) can be written in the form

R̂(0)
u (ρ) = aFiν(ρk̂mp(ρ)) + bGiν(ρk̂mp(ρ)), (106)

where Fiν(x) and Giν(x) are two real independent solutions for imaginary Bessel functions
defined by Dunster [48] as

Fiν(x) = 1

2

{
e−νπ/2H(1)

iν (x) + eνπ/2H(2)
iν (x)

}
(107)

and

Giν(x) = 1

2i

{
e−νπ/2H(1)

iν (x) − eνπ/2H(2)
iν (x)

}
. (108)

Their behaviors for small values of x are described as

Fiν(x) =
(

2 tanh(νπ/2)

νπ

)1/2

{cos(ν ln(x/2) − φν,0) + O(x2)}, x → 0+, (109)
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Figure 5. Numerical calculations of the characteristic function χ(ρ) defined in equation (102) for
various wedge angles 2α in the metallic wedge with ε1 = −20 and ε2 = 1.

Giν(x) =
(

2 coth(νπ/2)

νπ

)1/2

{sin(ν ln(x/2) − φν,0) + O(x2)}, x → 0+, (110)

where

φν,0 = arg{�(1 + iν)}. (111)

Substituting equations (109) and (110) into equation (106), we have

R̂(0)
u (ρ) = a

(
2 tanh(νπ/2)

νπ

)1/2

{cos(ν ln(ρk̂mp(ρ)/2) − φν,0)}

+ b

(
2 coth(νπ/2)

νπ

)1/2

{sin(ν ln(ρk̂mp(ρ)/2) − φν,0)}, ρk̂mp(ρ) → 0.

(112)

Comparing equation (112) with the boundary condition (68), we find

a = H0 exp

[
iν ln

k̂mp(ρ)

2
− iφν,0

](
2 tanh(νπ/2)

νπ

)−1/2

, (113)

b = −iH0 exp

[
iν ln

k̂mp(ρ)

2
− iφν,0

](
2 coth(νπ/2)

νπ

)−1/2

. (114)

The physical properties become clear when the general solution (106) is written using
the Hankel functions of the first and second kinds, which express the outgoing and incoming
waves, respectively, for ρ → ∞. Substituting equations (113) and (114) into equation (106),
and using equations (107) and (108), we find that R̂(0)

u (ρ) is divided into an incoming part,
R̂

(0)
in (ρ), and an outgoing part, R̂

(0)
out (ρ), as follows:

R̂(0)
u (ρ) = R̂(0)

in (ρ) + R̂
(0)
out(ρ), (115)

where

R̂(0)
in (ρ) = H ′

0

√
coth(νπ/2) +

√
tanh(νπ/2)

2
eνπ/2H(2)

iν (ρk̂mp(ρ)), (116)
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R̂
(0)
out(ρ) = H ′

0

√
coth(νπ/2) − √

tanh(νπ/2)

2
e−νπ/2H(1)

iν (ρk̂mp(ρ)), (117)

with

H ′
0 = H0 exp

[
iν ln

k̂mp(ρ)

2
− iφν,0

](
2

νπ

)−1/2

. (118)

Calculating from equations (116) and (117) the ratio

R̂
(0)
out(ρ)

R̂
(0)
in (ρ)

= e−2νπ H (1)
iν (ρk̂mp(ρ))

H
(2)
iν (ρk̂mp(ρ))

= e−νπ Fiν(ρk̂mp(ρ)) + iGiν(ρk̂mp(ρ))

Fiν(ρk̂mp(ρ)) − iGiν(ρk̂mp(ρ))
, (119)

we obtain the zeroth-order amplitude reflection coefficient∣∣∣∣∣ R̂
(0)
out(ρ)

R̂
(0)
in (ρ)

∣∣∣∣∣ = e−νπ . (120)

This exponential ratio is described as a function of the imaginary Bessel index ν. We see
that the incoming and the outgoing waves of the zeroth order are not balanced; the reflected
outgoing wave is much smaller in amplitude than the incident incoming wave when ν is more
than unity because the ratio in equation (120) is 0.043 for ν = 1.

6.5. Unified radial functions of the zeroth order for the metallic V-groove

In the metallic V-groove, the zeroth-order unified separation quantity ζ̃ (0)
u (ρ) determined by

equation (87) is fairly accurately estimated by the figure-of-merit function in equation (98).
Even with it, though, we cannot solve the zeroth-order unified radial equation (65)
as an already-known differential equation or to close approximation as an imaginary Bessel
differential equation. However, we can show that the zeroth-order unified radial equation (65)
roughly approximates the modified Whittaker differential equation [41, 42, 49, 50] through
transformations. In the metallic V-groove, let us write the zeroth-order unified radial
equation (65) as

∂2R̃(0)
u (ρ)

∂ρ2
+

1

ρ

∂R̃(0)
u (ρ)

∂ρ
+

(
k2
p +

ζ̃ (0)
u (ρ)

ρ2

)
R̃(0)

u (ρ) = 0, (121)

which can be rearranged as

∂2R̃(0)
u (ρ)

∂ρ2
+

1

ρ

∂R̃(0)
u (ρ)

∂ρ

+

(
k2
p +

ζ̂ (0)
u (ρ) − ζ (0)

u (0)

ρ2
+

ζ̃ (0)
u (ρ) − ζ̂ (0)

u (ρ)

ρ2
+

ζ (0)
u (0)

ρ2

)
R̃(0)

u (ρ) = 0.

(122)

From the figure-of-merit function in equation (98), we get the roughly approximate
formula

ζ̃ (0)
u (ρ) − ζ̂ (0)

u (ρ)

ρ2
= ζ (0)

u (0)q1 exp[−q2ρ − q3ρ
2]

ρ
≈ ν2q1

ρ
− ν2q1q2

(
0 � ρ � 1

q2

)
(123)

for ν =
√

ζ
(0)
u (0) in equation (78). Substituting equation (123) into equation (122), we find

that
∂2R̃(0)

u (ρ)

∂ρ2
+

1

ρ

∂R̃(0)
u (ρ)

∂ρ
+

(
{k̃mp(ρ)}2 +

ν2q1

ρ
+

ν2

ρ2

)
R̃(0)

u (ρ) = 0 (124)
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Figure 6. Numerical calculations of the ratio k̃mp(ρ)/k̃mp(0) using equations (125) and (129) for
various wedge angles 2α in the metallic V-groove with ε1 = 1 and ε2 = −20. The broken lines
do not satisfy the approximation condition denoted by 0 � ρ � 1/q2 in equation (123) (specific
values of q2 are given in table 3).

with the definition

k̃mp(ρ) =
√

k2
p − ν2q1q2 +

ζ̂
(0)
u (ρ) − ζ

(0)
u (0)

ρ2
. (125)

We modify equation (124) by writing R̃(0)
u (ρ) = ρ−1/2w(0)(ρ) and obtain the differential

equation

∂2w(0)(ρ)

∂ρ2
+

(
{k̃mp(ρ)}2 +

ν2q1

ρ
+

ν2 + 1
4

ρ2

)
w(0)(ρ) = 0, (126)

which could be transformed into the modified Whittaker differential equation if k̃mp(ρ) were
constant. Here, let us solve the differential equation (126) under the rough approximation

k̃mp(ρ) ≈ k̃mp(0), (127)

in which the differential equation (126) approximates

∂2w(0)(ρ)

∂ρ2
+

(
{k̃mp(0)}2 +

ν2q1

ρ
+

ν2 + 1
4

ρ2

)
w(0)(ρ) = 0, (128)

where

k̃mp(0) =
√

k2
p − ν2q1q2 + ν2p1/ (2p2) (129)

from equations (78), (97) and (125). In our numerical calculations, condition (127) is satisfied
in such a way that k̃mp(ρ) is numerically equal to k̃mp(0) within a range of 1% as shown in
figure 6. Writing r̃ = 2ρk̃mp(0) in equation (128), we get the modified form of the Whittaker
differential equation (see appendix A):

∂2w(0)

∂r̃2
+

(
1

4
− κ

r̃
+

ν2 + 1
4

r̃2

)
w(0) = 0 (130)

with the definition

κ = − ν2q1

2k̃mp(0)
. (131)
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Table 4. Values of the parameters calculated from equations (129) and (131) for specific values of
the wedge angle 2α. The equations were solved using the values of ν, q1, q2, p1 and p2 given in
tables 1–3. The parameters are normalized by the wavelength in vacuum, λ0.

2α (degrees) k̃mp(0)λ0 κ −κ/ν

1 6.280 −13.39 2.335
3 6.280 −4.437 2.321
5 6.276 −2.680 2.341

10 6.293 −1.336 2.521
15 6.322 −0.8870 3.917

Solutions to equation (130) are given by the (modified) Whittaker functions such as
Miκ,iν(ir̃), Miκ,−iν(ir̃), Wiκ,iν(ir̃) and W−iκ,iν(−ir̃). Their definitions, characteristics and
connection formulas are briefly summarized in section 2 of [51]. Table 4 shows that specific
values of κ in equation (131) are all negative in our numerical calculations.

We can now determine a rough approximate solution of the zeroth-order unified radial
equation (121) satisfying the boundary condition (68). From (11.04) of chapter 7 [42], we see
that the solution Miκ,−iν(ir̃) to equation (130) has the asymptotic formula

Miκ,−iν(ir̃) ∼ (ir̃)−iν+1/2 (r̃ → 0), (132)

or

Miκ,−iν(2iρk̃mp(0)) ∼ (2iρk̃mp(0))−iν+1/2 (ρ → 0), (133)

whose behavior satisfies the boundary condition (68). Comparing equations (68) and (133),
we find that

R̃(0)
u (ρ) = H ′′

0 ρ−1/2Miκ,−iν(2iρk̃mp(0)), (134)

where

H ′′
0 = H0{2ik̃mp(0)}iν−1/2. (135)

The physical properties become clear when solution (134) is rewritten using the Whittaker
functions W−iκ,iν(−2iρk̃mp(0)) and Wiκ,iν(2iρk̃mp(0)), which express outgoing and incoming
waves, respectively, for ρ → ∞ (see appendix A). By applying relations (B.10) to
equation (134), we find that R̃(0)

u (ρ) is divided into an incoming part, R̃(0)
in (ρ), and an outgoing

part, R̃
(0)
out(ρ), as follows:

R̃(0)
u (ρ) = R̃(0)

in (ρ) + R̃
(0)
out(ρ), (136)

where

R̃(0)
in (ρ) = iH ′′

0 ρ−1/2 �(1 − 2iν) eπ(ν+κ)

�
(

1
2 − iν + iκ

) Wiκ,iν(2iρk̃mp(0)), (137)

R̃
(0)
out(ρ) = H ′′

0 ρ−1/2 �(1 − 2iν) eπκ

�
(

1
2 − iν − iκ

)W−iκ,iν(−2iρk̃mp(0)). (138)

From equations (137) and (138), we get the ratio

R̃
(0)
out(ρ)

R̃
(0)
in (ρ)

= ie−νπ
�
(

1
2 − iν + iκ

)
W−iκ,iν(−2iρk̃mp(0))

�
(

1
2 − iν − iκ

)
Wiκ,iν(2iρk̃mp(0))

, (139)
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in which Wiκ,iν(2iρk̃mp(0)) and W−iκ,iν(−2iρk̃mp(0)) form a complex conjugate pair (see
appendix B). By using the formula [41, 43, 53]∣∣∣∣�

(
1

2
+ iy

)∣∣∣∣ =
√

π

cosh πy
(140)

for real y, we find from equation (139) that∣∣∣∣∣ R̃
(0)
out(ρ)

R̃
(0)
in (ρ)

∣∣∣∣∣ = e−νπ

√
cosh π (ν + κ)

cosh π (ν − κ)
, (141)

which will be referred to as the zeroth-order amplitude reflection coefficient for the metallic
V-groove. The specific values of −κ/ν in table 4 suggest the condition

−κ � ν(>0), (142)

which makes equation (141) close to∣∣∣∣∣ R̃
(0)
out(ρ)

R̃
(0)
in (ρ)

∣∣∣∣∣ ≈ e−2νπ (143)

through the approximations

cosh π(ν + κ) ≈ 1
2 e−π(ν+κ), cosh π(ν − κ) ≈ 1

2 eπ(ν−κ). (144)

The exponential ratio (143) is much smaller than the ratio (120) for positive ν. We see
that the incoming and outgoing waves of the zeroth order in the metallic V-groove are much
less balanced than those in the metallic wedge.

7. First-order perturbation solutions for the metallic wedge

In the preceding section, we obtained the zeroth-order perturbation solutions for both the
metallic wedge and V-groove by solving problem P0 (70). In this and the following
sections, we consider the first-order perturbation solutions for the metallic wedge and V-
groove, respectively, by solving problem P1 (71). The problem P1 is involved in solving
nonhomogeneous ODEs in which the homogeneous ODEs without the nonhomogeneous
terms are already solved in problem P0 (70). Specific solutions to the nonhomogeneous ODEs
can be obtained by using the variation of parameters or the Green’s function method.

For the metallic wedge, only the odd symmetry with respect to φ is allowed for the
superfocusing modes. Accordingly, the half region 0 � φ � π is all that needs to be
considered. In this section, we shall write equation (57) as

η̂j (ρ) =
√

(βjρ)2 + ζ̂
(0)
u (ρ), j = 1, 2 (145)

to clearly indicate functions for the metallic wedge.

7.1. Extended angular functions of the first order for the metallic wedge

From equations (58) and (59), we obtain the first-order extended angular equation for the odd
symmetry:

∂2Q
−(1)
j (φ, ρ)

∂φ2
− {η̂j (ρ)}2Q

−(1)
j (φ, ρ) = −N

−(1)
j (φ, ρ), j = 1, 2 (146)
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with the nonhomogeneous term

N
−(1)
j (φ, ρ) = ρ2 ∂2

∂ρ2
Q

−(0)
j (φ, ρ) +

2ρ2

R̂
(0)
u (ρ)

(
∂R̂(0)

u (ρ)

∂ρ

)
∂Q

−(0)
j (φ, ρ)

∂ρ

+ ρ
∂Q

−(0)
j (φ, ρ)

∂ρ
− ζ̂ (1)

u (ρ)Q
−(0)
j (φ, ρ), j = 1, 2, (147)

where Q
−(0)
j (φ, ρ) and R̂(0)

u (ρ) are as obtained in sections 6.1 and 6.4, respectively, and ζ̂ (1)
u (ρ)

is to be determined. The boundary conditions are given by

Q
−(1)
j (α, ρ) = 0, j = 1, 2, (148)

Q
−(1)
j (0, ρ) = 0, Q

−(1)
j (π, ρ) = 0, j = 1, 2, (149)

1

ε1
lim

φ→α−0

∂

∂φ
Q

−(1)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

−(1)
2 (φ, ρ), (150)

where equations (148) are obtained from equations (63), equations (149) are attributed to the
characteristics of the odd symmetry and equation (150) is obtained from equations (64). In
order to solve the nonhomogeneous ODEs (146), by reference to chapter 10.5 in [52], let us
use the Green’s function method based on the self-adjoint homogeneous differential equation

d

dx

(
p(x)

d

dx

)
y(x) + q(x)y(x) = 0, a � x � b, (151)

in which the nonhomogeneous differential equation

d

dx

(
p(x)

d

dx

)
y(x) + q(x)y(x) = −f (x) (152)

has the solution

y(x) =
∫ b

a

G(x, t)f (t) dt (153)

with the Green’s function

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

− u(x)v(t)

p(t)W(t)
, a � x < t

− u(t)v(x)

p(t)W(x)
, t < x � b

(154)

where u(x) and v(x) are two independent solutions of the homogenous differential
equation (151) and satisfy the boundary conditions at x = a and x = b, respectively, and

W(t) = u(t)v′(t) − v(t)u′(t) (155)

is the Wronskian.
For the metallic region j = 1, according to the Green’s function method, the

nonhomogeneous ODE (146) has the solution

Q
−(1)
1 (φ, ρ) =

∫ α

0
Ĝ1(φ, φ′)N−(1)

1 (φ′, ρ) dφ′ (0 � φ � α) (156)

with the Green’s function

Ĝ1(φ, φ′) =

⎧⎪⎪⎨
⎪⎪⎩

− û1(φ)v̂1(φ
′)

p̂1(φ′)Ŵ1(φ′)
, 0 � φ < φ′

− û1(φ
′)v̂1(φ)

p̂1(φ′)Ŵ1(φ′)
, φ′ < φ � α

(157)
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where by choosing

û1(φ) = sinh{φη̂1(ρ)}, (158)

v̂1(φ) = sinh{(φ − α)η̂1(ρ)}, (159)

we obtain the Wronskian

Ŵ1(φ
′) = η̂1(ρ) sinh{αη̂1(ρ)} (160)

and by comparing equations (146) and (152), we can take

p̂1(φ
′) = 1. (161)

It follows that

Q
−(1)
1 (φ, ρ) = − sinh{(φ − α)η̂1(ρ)}

η̂1(ρ)

∫ φ

0

sinh{φ′η̂1(ρ)}
sinh{αη̂1(ρ)} N

−(1)
1 (φ′, ρ) dφ′

− sinh{φη̂1(ρ)}
η̂1(ρ)

∫ α

φ

sinh{(φ′ − α)η̂1(ρ)}
sinh{αη̂1(ρ)} N

−(1)
1 (φ′, ρ) dφ′

= − sinh{(φ − α)η̂1(ρ)}
η̂1(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ φ

0
Q

−(0)
1 (φ′, ρ)

∂2

∂ρ2
Q

−(0)
1 (φ′, ρ) dφ′

+

{
2ρ2

R̂
(0)
u (ρ)

(
∂R̂(0)

u (ρ)

∂ρ

)
+ ρ

}∫ φ

0
Q

−(0)
1 (φ′, ρ)

∂

∂ρ
Q

−(0)
1 (φ′, ρ) dφ′

− ζ̂ (1)
u (ρ)

∫ φ

0

{
Q

−(0)
1 (φ′, ρ)

}2
dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− sinh{φη̂1(ρ)}
η̂1(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ α

φ

Q
−(0)
1 (φ′ − α, ρ)

∂2

∂ρ2
Q

−(0)
1 (φ′, ρ) dφ′

+

{
2ρ2

R̂
(0)
u (ρ)

(
∂R̂(0)

u (ρ)

∂ρ

)
+ ρ

}∫ α

φ

Q
−(0)
1 (φ′ − α, ρ)

∂

∂ρ
Q

−(0)
1 (φ′, ρ) dφ′

−ζ̂ (1)
u (ρ)

∫ α

φ

Q
−(0)
1 (φ′ − α, ρ)Q

−(0)
1 (φ′, ρ) dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(162)

For the dielectric region j = 2, in the same manner as above, the nonhomogeneous ODE
(146) has the solution

Q
−(1)
2 (φ, ρ) =

∫ π

α

Ĝ2(φ, φ′)N−(1)
2 (φ′, ρ) dφ′ (α � φ � π) (163)

with the Green’s function

Ĝ2(φ, φ′) =

⎧⎪⎪⎨
⎪⎪⎩

− û2(φ)v̂2(φ
′)

p̂2(φ′)Ŵ2(φ′)
, α � φ < φ′

− û2(φ
′)v̂2(ϕ)

p̂2(φ′)Ŵ2(φ′)
, φ′ < φ � π

where by choosing
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û2(φ) = sinh{(α − φ)η̂2(ρ)}, (165)

v̂2(φ) = sinh{(π − φ)η̂2(ρ)}, (166)

we get the Wronskian

Ŵ2(φ
′) = η̂2(ρ) sinh{(π − α)η̂2(ρ)} (167)

and, as with equation (161), we can take

p̂2(φ
′) = 1. (168)

It follows that

Q
−(1)
2 (φ, ρ) = − sinh{(π − φ)η̂2(ρ)}

η̂2(ρ)

∫ φ

α

sinh{(α − φ′)η̂2(ρ)}
sinh{(π − α)η̂2(ρ)} N

−(1)
2 (φ′, ρ) dφ′

− sinh{(α − φ)η̂2(ρ)}
η̂2(ρ)

∫ π

φ

sinh{(π − φ′)η̂2(ρ)}
sinh{(π − α)η̂2(ρ)} N

−(1)
2 (φ′, ρ) dφ′

= − sinh{(π − φ)η̂2(ρ)}
η̂2(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ φ

α

Q
−(0)
2 (φ′ + π − α, ρ)

∂2

∂ρ2
Q

−(0)
2 (φ′, ρ) dφ′

+

{
2ρ2

R̂
(0)
u (ρ)

(
∂R̂(0)

u (ρ)

∂ρ

)
+ ρ

}∫ φ

α

Q
−(0)
2 (φ′+ π − α, ρ)

∂

∂ρ
Q

−(0)
2 (φ′, ρ) dφ′

−ζ̂ (1)
u (ρ)

∫ φ

α

Q
−(0)
2 (φ′ + π − α, ρ)Q

−(0)
2 (φ′, ρ) dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− sinh{(α − φ)η̂2(ρ)}
η̂2(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ π

φ

Q
−(0)
2 (φ′, ρ)

∂2

∂ρ2
Q

−(0)
2 (φ′, ρ) dφ′

+

{
2ρ2

R̂
(0)
u (ρ)

(
∂R̂(0)

u (ρ)

∂ρ

)
+ ρ

}∫ π

φ

Q
−(0)
2 (φ′, ρ)

∂

∂ρ
Q

−(0)
2 (φ′, ρ) dφ′

−ζ̂ (1)
u (ρ)

∫ π

φ

{
Q

−(0)
2 (φ′, ρ)

}2
dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(169)

7.2. Determination of the unified separation quantity of the first order for the metallic wedge

The boundary condition (150) can be used to determine the first-order unified separation
quantity ζ̂ (1)

u (ρ). Substituting equation (162) into the left side of equation (150), we get

lim
φ→α−0

∂

∂φ
Q

−(1)
1 (φ, ρ) = −

∫ α

0
Q

−(0)
1 (φ′, ρ)N

−(1)
1 (φ′, ρ )dφ′. (170)

Substituting equation (169) into the right side of equation (150), we have

lim
φ→α+0

∂

∂φ
Q

−(1)
2 (φ, ρ) =

∫ π

α

Q
−(0)
2 (φ′, ρ)N

−(1)
2 (φ′, ρ) dφ′. (171)

Setting equation (170) equal to equation (171) according to equation (150), we find

1

ε1

∫ α

0
Q

−(0)
1 (φ′, ρ)N

−(1)
1 (φ′, ρ) dφ′ +

1

ε2

∫ π

α

Q
−(0)
2 (φ′, ρ)N

−(1)
2 (φ′, ρ) dφ′ = 0. (172)
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Substituting equations (147) into equation (172) and rearranging terms, we find for the
first-order unified separation quantity that

ζ̂ (1)
u (ρ)

=

⎡
⎢⎢⎢⎣

ρ2
{

1
ε1

∫ α

0 Q
−(0)
1 (φ, ρ) ∂2

∂ρ2 Q
−(0)
1 (φ, ρ) dφ + 1

ε2

∫ π

α
Q

−(0)
2 (φ, ρ) ∂2

∂ρ2 Q
−(0)
2 (φ, ρ) dφ

}

+
{

2ρ2

R̂
(0)
u (ρ)

(
∂R̂

(0)
u (ρ)

∂ρ

)
+ ρ
}{ 1

ε1

∫ α

0 Q
−(0)
1 (φ, ρ) ∂

∂ρ
Q

−(0)
1 (φ, ρ) dφ

+ 1
ε2

∫ π

α
Q

−(0)
2 (φ, ρ) ∂

∂ρ
Q

−(0)
2 (φ, ρ) dφ

}
⎤
⎥⎥⎥⎦

1
ε1

∫ α

0

{
Q

−(0)
1 (φ, ρ)

}2
dφ + 1

ε2

∫ π

α

{
Q

−(0)
2 (φ, ρ)

}2
dφ

,

(173)

where ε1 = εm and ε2 = εd are used for numerical calculations.

7.3. Unified radial function of the first order for the metallic wedge

The first-order unified radial equation (66) is written using equation (100) as

∂2R̂(1)
u (ρ)

∂ρ2
+

1

ρ

∂R̂(1)
u (ρ)

∂ρ
+

(
{k̂mp(ρ)}2 +

ζ (0)
u (0)

ρ2

)
R̂(1)

u (ρ) = − ζ̂ (1)
u (ρ)

ρ2
R̂(0)

u (ρ), (174)

whose associated homogeneous ODE can be approximately solved as an imaginary Bessel
differential equation under the quasi-constant approximation as discussed in section 6.4. To
solve equation (174), let us recall a solution to a nonhomogeneous, linear, second-order ODE

d2y

dx2
+ P(x)

dy

dx
+ Q(x)y = F(x). (175)

The most general solution of equation (175) is

y(x) = c1y1(x) + c2y2(x) + yp(x), (176)

where y1(x) and y2(x) are two nontrivial linearly independent solutions to the associated
homogeneous ODE

d2y

dx2
+ P(x)

dy

dx
+ Q(x)y = 0 (177)

and yp(x) is a particular solution given by

yp(x) = y2(x)

∫ x y1(s)F (s) ds

W {y1(s), y2(s)} − y1(x)

∫ x y2(s)F (s) ds

W {y1(s), y2(s)} , (178)

where W {y1(s), y2(s)} is the Wronskian of y1(s) and y2(s). Note that the particular solution
(178) can be obtained from the variation of parameters method (see exercise 9.6.25 in [52]).
Accordingly, for the nonhomogeneous ODE (174), under the quasi-constant approximation,
choosing the Hankel functions H(1)

iν (ρk̂mp(ρ)) and H(2)
iν (ρk̂mp(ρ)) as two nontrivial linearly

independent solutions to the associated homogeneous ODE, from the reference of (5.9.4) in
[43] we obtain the Wronskian

W
{
H(1)

iν (ρk̂mp(ρ)),H (2)
iν (ρk̂mp(ρ))

} ≈ − 4i

πρ
. (179)

Then by taking account of the following boundary condition from equation (69)

R̂(1)
u (ρ) = 0 (ρ → 0), (180)

we find that the solution is

R̂(1)
u (ρ) = R̂(1)

in (ρ) + R̂
(1)
out(ρ), (181)
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where

R̂(1)
in (ρ) = −π i

4
H(2)

iν (ρk̂mp(ρ))

∫ ρ

0
ζ̂ (1)
u (ρ ′)R̂(0)

u (ρ ′)H (1)
iν (ρ ′k̂mp(ρ ′))

dρ ′

ρ ′ (182)

and

R̂
(1)
out(ρ) = π i

4
H(1)

iν (ρk̂mp(ρ))

∫ ρ

0
ζ̂ (1)
u (ρ ′)R̂(0)

u (ρ ′)H (2)
iν (ρ ′k̂mp(ρ ′))

dρ ′

ρ ′ . (183)

The functions R̂(1)
in (ρ) and R̂

(1)
out(ρ) correspond to the incoming and outgoing waves,

respectively, for ρ → ∞.
The second-order perturbation solutions can be obtained in much the same manner as

the first-order perturbation solutions. We give the second-order perturbation solutions for the
metallic wedge in appendix C.

8. First-order perturbation solutions for the metallic V-groove

In this section, we consider the first-order perturbation solutions for the metallic V-groove by
solving problem (71). For the metallic wedge, only the even symmetry with respect to φ is
allowed for the superfocusing modes. Because of the symmetry, we only have to examine the
half region 0 � φ � π . Let us write equation (57) as

η̃j (ρ) =
√

(βjρ)2 + ζ̃
(0)
u (ρ), j = 1, 2 (184)

to clearly show functions used in the metallic V-groove.

8.1. Extended angular functions of the first order for the metallic V-groove

From equations (58) and (59), we obtain the first-order extended angular equations for the
even symmetry:

∂2Q
+(1)
j (φ, ρ)

∂φ2
− {η̃j (ρ)}2Q

+(1)
j (φ, ρ) = −N

+(1)
j (φ, ρ), j = 1, 2 (185)

with the nonhomogeneous terms

N
+(1)
j (φ, ρ) = ρ2 ∂2

∂ρ2
Q

+(0)
j (φ, ρ) +

2ρ2

R̃
(0)
u (ρ)

(
∂R̃(0)

u (ρ)

∂ρ

)
∂Q

+(0)
j (φ, ρ)

∂ρ

+ ρ
∂Q

+(0)
j (φ, ρ)

∂ρ
− ζ̃ (1)

u (ρ)Q
+(0)
j (φ, ρ), j = 1, 2, (186)

where Q
+(0)
j (φ, ρ) and R̃(0)

u (ρ) are as obtained in sections 6.1 and 6.5, while ζ̃ (1)
u (ρ) is to be

determined. The boundary conditions are given by

Q
+(1)
j (α, ρ) = 0, j = 1, 2, (187)

∂

∂φ
Q

+(1)
j (φ, ρ)

∣∣∣∣
φ=0

= 0,
∂

∂φ
Q

+(1)
j (φ, ρ)

∣∣∣∣
φ=π

= 0, j = 1, 2 (188)

and
1

ε1
lim

φ→α−0

∂

∂φ
Q

+(1)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

+(1)
2 (φ, ρ), (189)

where equations (187) are obtained from equations (63), equations (188) are ascribed to
the characteristics of the even symmetry and equation (189) is obtained from equation (64).
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The nonhomogeneous ODEs (185) can be solved by using the Green’s function method (see
equations (151)–(155)).

For the dielectric region j = 1, the nonhomogeneous ODE (185) has the solution

Q
+(1)
1 (φ, ρ) =

∫ α

0
G̃1(φ, φ′)N1(φ

′, ρ) dφ′ (0 � φ � α) (190)

with the Green’s function

G̃1(φ, φ′) =

⎧⎪⎪⎨
⎪⎪⎩

− ũ1(φ)ṽ1(φ
′)

p̃1(φ′)W̃1(φ′)
, 0 � φ < φ′

− ũ1(φ
′)ṽ1(φ)

p̃1(φ′)W̃1(φ′)
, φ′ < φ � α,

(191)

where by choosing

ũ1(φ) = cosh{φη̃1(ρ)} (192)

and

ṽ1 (φ) = sinh {(φ − α) η̃1(ρ)} (193)

we obtain the Wronskian

W̃1(φ
′) = η̃1(ρ) cosh{αη̃1(ρ)} (194)

and obviously we have

p̃1(φ
′) = 1. (195)

It follows that

Q
+(1)
1 (φ, ρ) = − sinh{(φ − α)η̃1(ρ)}

η̃1(ρ)

∫ φ

0

cosh{φ′η̃1(ρ)}
cosh{αη̃1(ρ)} N

+(1)
1 (φ′, ρ) dφ′

− cosh{φη̃1(ρ)}
η̃1(ρ)

∫ α

φ

sinh{(φ′ − α)η̃1(ρ)}
cosh{αη̃1(ρ)} N

+(1)
1 (φ′, ρ) dφ′

= − sinh{(φ − α)η̃1(ρ)}
η̃1(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ φ

0
Q

+(0)
1 (φ′, ρ)

∂2

∂ρ2
Q

+(0)
1 (φ′, ρ) dφ′

+

{
2ρ2

R̃
(0)
u (ρ)

(
∂R̃(0)

u (ρ)

∂ρ

)
+ ρ

}∫ φ

0
Q

+(0)
1 (φ′, ρ)

∂

∂ρ
Q

+(0)
1 (φ′, ρ) dφ′

−ζ̃ (1)
u (ρ)

∫ φ

0

{
Q

+(0)
1 (φ′, ρ)

}2
dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
cosh{φη̃1(ρ)}

η̃1(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ α

φ

{
1

η̃1(ρ)

∂

∂φ′ Q
+(0)
1 (φ′ − α, ρ)

}
∂2

∂ρ2
Q

+(0)
1 (φ′, ρ) dφ′

+

{
2ρ2

R̃
(0)
u (ρ)

(
∂R̃(0)

u (ρ)

∂ρ

)
+ ρ

}∫ α

φ

{
1

η̃1(ρ)

∂

∂φ′ Q
+(0)
1 (φ′ − α, ρ)

}
∂

∂ρ
Q

+(0)
1 (φ′, ρ) dφ′

−ζ̃ (1)
u (ρ)

∫ α

φ

{
1

η̃1(ρ)

∂

∂φ′ Q
+(0)
1 (φ′ − α, ρ)

}
Q

+(0)
1 (φ′, ρ) dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(196)
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For the metallic region j = 2, equation (185) has the solution

Q
+(1)
2 (φ, ρ) =

∫ π

α

G̃2(φ, φ′)N+(1)
2 (φ′, ρ) dφ′ (α � φ � π) (197)

with the Green’s function

G̃2(φ, φ′) =

⎧⎪⎪⎨
⎪⎪⎩

− ũ2(φ)ṽ2(φ
′)

p̃2(φ′)W̃2(φ′)
, α � φ < φ′

− ũ2(φ
′)ṽ2(ϕ)

p̃2(φ′)W̃2(φ′)
, φ′ < φ � π,

(198)

where by choosing

ũ2(φ) = sinh{(α − φ)η̃2(ρ)} (199)

and

ṽ2(φ) = cosh{(π − φ)η̃2(ρ)} (200)

we get the Wronskian

W2(φ
′) = η̃2(ρ) cosh{(π − α)η̃2(ρ)} (201)

and obviously we have

p̃2(φ
′) = 1. (202)

It follows that

Q
+(1)
2 (φ, ρ) = −cosh{(π − φ)η̃2(ρ)}

η̃2(ρ)

∫ φ

α

sinh{(α − φ′)η̃2(ρ)}
cosh{(π − α)η̃2(ρ)}N

+(1)
2 (φ′, ρ) dφ′

− sinh{(α − φ)η̃2(ρ)}
η̃2(ρ)

∫ π

φ

cosh{(π − φ′)η̃2(ρ)}
cosh{(π − α)η̃2(ρ)} N

+(1)
2 (φ′, ρ) dφ′

= cosh{(π − φ)η̃2(ρ)}
η̃2(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ φ

α

{
1

η̃2(ρ)

∂

∂φ′ Q
+(0)
2 (φ′ + π − α, ρ)

}
∂2

∂ρ2
Q

+(0)
2 (φ′, ρ) dφ′

+

{
2ρ2

R̃
(0)
u (ρ)

(
∂R̃(0)

u (ρ)

∂ρ

)
+ ρ

}

×
∫ φ

α

{
1

η̃2(ρ)

∂

∂φ′ Q
+(0)
2 (φ′ + π − α, ρ)

}
∂

∂ρ
Q

+(0)
2 (φ′, ρ) dφ′

−ζ̃ (1)
u

∫ φ

α

{
1

η̃2(ρ)

∂

∂φ′ Q
+(0)
2 (φ′ + π − α, ρ)

}
Q

+(0)
2 (φ′, ρ) dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− sinh{(α − φ)η̃2(ρ)}
η̃2(ρ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
∫ π

φ

Q
+(0)
2 (φ′, ρ)

∂2

∂ρ2
Q

+(0)
2 (φ′, ρ) dφ′

+

{
2ρ2

R̃
(0)
u (ρ)

(
∂R̃(0)

u (ρ)

∂ρ

)
+ ρ

}∫ π

φ

Q
+(0)
2 (φ′, ρ)

∂

∂ρ
Q

+(0)
2 (φ′, ρ) dφ′

− ζ̃ (1)
u

∫ π

φ

{
Q

+(0)
2 (φ′, ρ)

}2
dφ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(203)
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8.2. Determination of the unified separation quantity of the first order for the metallic
V-groove

The boundary condition (189) is used for determining the first-order unified separation quantity
ζ̃ (1)
u . Substituting equation (196) into the left side of equation (189), we get

lim
φ→α−0

∂

∂φ
Q

+(1)
1 (φ, ρ) = −

∫ α

0
Q

+(0)
1 (φ′, ρ)N

+(1)
1 (φ′, ρ) dφ′. (204)

Substituting equation (203) into the right side of equation (189), we have

lim
φ→α+0

∂

∂φ
Q

+(1)
2 (φ, ρ) =

∫ π

α

Q
+(0)
2 (φ′, ρ)N

+(1)
2 (φ′, ρ) dφ′. (205)

Setting equation (204) equal to equation (205) from equation (189), we find

1

ε1

∫ α

0
Q

+(0)
1 (φ′, ρ)N

+(1)
1 (φ′, ρ) dφ′ +

1

ε2

∫ π

α

Q
+(0)
2 (φ′, ρ)N

+(1)
2 (φ′, ρ) dφ′ = 0. (206)

Substituting equations (186) into equation (206) and by rearranging terms, we find for the
first-order unified separation quantity that

ζ̃ (1)
u (ρ)

=

⎡
⎢⎢⎢⎣
ρ2
{

1
ε1

∫ α

0 Q
+(0)
1 (φ, ρ) ∂2

∂ρ2 Q
+(0)
1 (φ, ρ) dφ + 1

ε2

∫ π

α
Q

+(0)
2 (φ, ρ) ∂2

∂ρ2 Q
+(0)
2 (φ, ρ) dφ

}

+
{

2ρ2

R̃
(0)
u (ρ)

(
∂R̃

(0)
u (ρ)

∂ρ

)
+ ρ
}{ 1

ε1

∫ α

0 Q
+(0)
1 (φ, ρ) ∂

∂ρ
Q

+(0)
1 (φ, ρ) dφ

+ 1
ε2

∫ π

α
Q

+(0)
2 (φ, ρ) ∂

∂ρ
Q

+(0)
2 (φ, ρ) dφ

}
⎤
⎥⎥⎥⎦

1
ε1

∫ α

0

{
Q

+(0)
1 (φ, ρ)

}2
dφ + 1

ε2

∫ π

α

{
Q

+(0)
2 (φ, ρ)

}2
dφ

,

(207)

where ε1 = εd and ε2 = εm are used for numerical calculations. Note that we can
obtain equation (173) by replacing even (+) by odd (−), and tilde (˜) by circumflex (ˆ), in
equation (207).

8.3. Unified radial function of the first order for the metallic V-groove

According to equations (121)–(125), the first-order unified radial equation (66) roughly
approximates to

∂2R̃(1)
u (ρ)

∂ρ2
+

1

ρ

∂R̃(1)
u (ρ)

∂ρ
+

(
{k̃mp(ρ)}2 +

ν2q1

ρ
+

ν2

ρ2

)
R̃(1)

u (ρ) = − ζ̃ (1)
u (ρ)

ρ2
R̃(0)

u (ρ). (208)

On writing R̃(1)
u (ρ) = ρ−1/2w(1)(ρ) and using the rough approximation (127), we can

transform equation (208) into

∂2w(1)(ρ)

∂ρ2
+

(
{k̃mp(0)}2 +

ν2q1

ρ
+

ν2 + 1
4

ρ2

)
w(1)(ρ) = − ζ̃ (1)

u (ρ)

ρ3/2
R̃(0)

u (ρ), (209)

whose associated homogeneous ODE has the pair of solutions, Wiκ,iν(2iρk̃mp(0)) and
W−iκ,iν(−2iρk̃mp(0)). By referring to section 2.7 in [50], we get the Wronskian

W {Wiκ,iν(2iρk̃mp(0)),W−iκ,iν(−2iρk̃mp(0))} = 2ik̃mp(0) e−κπ . (210)

By taking account of the following boundary condition from equation (69),

R̃(1)
u (ρ) = 0 (ρ → 0), (211)
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we can solve the nonhomogeneous ODE (209) by using the particular solution in
equations (175)–(178). After some algebraic operations, we find the solution

R̃(1)
u (ρ) = R̃(1)

in (ρ) + R̃
(1)
out(ρ), (212)

where

R̃(1)
in (ρ) = −ieκπρ−1/2Wiκ,iν(2iρk̃mp(0))

×
∫ ρ

0
ζ̃ (1)
u (ρ ′)R̃(0)

u (ρ ′)W−iκ,iν(−2iρ ′k̃mp(0))
dρ ′

2k̃mp(0)(ρ ′)3/2
(213)

and

R̃
(1)
out(ρ) = ieκπρ−1/2W−iκ,iν(−2iρk̃mp(0))

×
∫ ρ

0
ζ̃ (1)
u (ρ ′)R̃(0)

u (ρ ′)Wiκ,iν(2iρ ′k̃mp(0))
dρ ′

2k̃mp(0)(ρ ′)3/2
. (214)

Note that R̃(1)
in (ρ) and R̃

(1)
out(ρ) correspond to the incoming and outgoing waves, respectively,

for ρ → ∞.
We can obtain the second-order perturbation solutions for the metallic V-groove in much

the same manner as the first-order perturbation solutions (see appendix D).

9. Electric-field-line representation

It is very important to understand superfocusing SPPs not only mathematically but also visually.
In the present case where the electromagnetic field has only a z-component of the magnetic
field in the cylindrical coordinates system, we can use a field-line pattern representation of
the electric field, which is graphically simpler and more intuitive than the field-vector pattern
representation.

Here, we describe the field-line pattern representation of an electric field in detail. The
tangent at an arbitrary point on an electric field line indicates the direction of the electric field
vector E(ρ, φ, t) at that point. This fact can be described mathematically by using a line
vector element ds as follows:

E (ρ, φ, t) × ds = 0 (215)

which can be simplified into

dρ

Eρ(ρ, φ, t)
− ρ dφ

Eφ(ρ, φ, t)
= 0 (216)

when

E(ρ, φ, t) = Eρ(ρ, φ, t)eρ + Eφ(ρ, φ, t)eφ, (217)

ds = dρ eρ + ρ dφ eφ, (218)

where eρ and eφ are the unit vectors along the ρ- and ϕ-axes, respectively. For the magnetic
fields described in equations (1) and (2), from equations (41)–(47) and equation (4), we can
get the ρ and ϕ components of the electric field as follows:

Eρ(ρ, φ, t) = Re[Eρ(ρ, φ) exp(−iωt)] = c

ωεj

1

ρ

∂

∂φ
Hz

(
ρ, φ, t − π

2ω

)
, (219)

Eφ(ρ, φ, t) = Re[Eφ(ρ, φ) exp(−iωt)] = − c

ωεj

∂

∂ρ
Hz

(
ρ, φ, t − π

2ω

)
. (220)
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Substituting equations (219) and (220) into equation (216), we obtain a differential
equation expressed in terms of total derivatives with respect to ρ and φ as follows:

∂

∂ρ

(
Hz

(
ρ, φ, t − π

2ω

))
dρ +

∂

∂φ

(
Hz

(
ρ, φ, t − π

2ω

))
dφ = 0, (221)

which can be described by the exact differential form

dψ(ρ, θ) = ∂

∂ρ
ψ(ρ, θ) dρ +

∂

∂φ
ψ(ρ, θ) dφ = 0 (222)

with the solution

ψ(ρ, θ) = constant, (223)

if we set

ψ(ρ, θ) = Hz

(
ρ, φ, t − π

2ω

)
. (224)

Since the time-varying scalar field for the electric-field-line representation, denoted by
f (ρ, φ, t), is proportional to the sinusoidal time dependence e−iωt , by taking account of
equation (2) in estimating equation (224), we can set

f (ρ, φ, t) = ψ(ρ, θ) (225)

or

f (ρ, φ, t) = Hz

(
ρ, φ, t − π

2ω

)
. (226)

The field-line pattern at time t = t0 is described by a scalar field with the contour

f (ρ, φ, t0) = C, (227)

where C is the contour level. The contour interval can be controlled by the interval value of the
contour level. The evolution of field-line patterns can be investigated for different moments

t = t0 + nτ, with n = 0, 1, 2, 3, . . . (228)

where τ is a suitably chosen duration between two neighboring snapshots.
For actual calculations, let us rewrite equation (226) into a form containing the unified

radial function and the extended angular function. Substituting equations (2), (4), (5) and
(39) into equation (226), we obtain the scalar field for the electric-field-line representation as
follows:

f (ρ, φ, t) = Re
[
Ru(ρ)Qs

j (φ, ρ) exp(−iωt + iπ/2)
]
, j = 1, 2, (229)

where s indicates the even (+) or odd (−) symmetry with respect to φ and Ru(ρ) is accordingly
determined. The electric-field-line representation becomes more accurate when we use a
higher-order approximate solution of the unified radial and extended angular functions in
equation (229). When the zeroth-order approximated solution is used in equation (229), the
scalar field for the electric-field-line representation becomes

f 0th(ρ, φ, t) = Re
[
R(0)

u (ρ)Q
s(0)
j (φ, ρ) exp(−iωt + iπ/2)

]
, j = 1, 2. (230)

For the first-order approximated solution, it becomes

f 1st(ρ, φ, t) = Re
[{

R(0)
u (ρ) + R(1)

u (ρ)
}{

Q
s(0)
j (φ, ρ) + Q

s(1)
j (φ, ρ)

}
× exp(−iωt + iπ/2)

]
, j = 1, 2. (231)

In the same manner, we can easily write the scalar field for the electric-field-line representation
when given the second-order approximated solution.
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Figure 7. Electric field lines of superfocusing modes of SPPs in the metallic wedge with the
wedge angle 2α = 3◦, obtained using the zeroth-order (a) and first-order (b) approximate solutions
calculated for ε1 = −20 and ε2 = 1. Geometrical dimensions of the horizontal and vertical axes
are ρ/λ0 = 1.

Figure 7 shows the electric-field-line patterns of superfocusing modes for the metallic
wedge with the angle 2α = 3◦ using the zeroth-order (a) and first-order (b) approximate
solutions (equations (230) and (231)), where R(0)

u (ρ), R(1)
u (ρ), Qs(0)

j (φ, ρ) and Q
s(1)
j (φ, ρ) are,

respectively, replaced by R̂(0)
u (ρ), R̂(1)

u (ρ), Q
−(0)
j (φ, ρ) and Q

−(1)
j (φ, ρ). In the calculation,

we used εd = 1, εm = −20, t0 = 0 and H0 = 1. Between parts (a) and (b) in the figure,
the electric-field-line patterns look much the same near the origin and the wedge surface but
become different farther from them. This behavior can be understood by the fact that the radial
and extended angular functions of the first order are solved so as to equal zero at the origin and
the wedge surface, respectively. Figure 7 suggests that around the origin, or the wedge apex,
the zeroth-order approximate solution is sufficiently accurate to show the electric-field-line
patterns for the metallic wedge.

Figure 8 shows the electric-field-line patterns of superfocusing modes for the metallic
V-groove with the angle 2α = 5◦ for the zeroth-order (a) and first-order (b) approximate
solutions (equations (230) and (231)), respectively, where R(0)

u (ρ), R(1)
u (ρ), Q

s(0)
j (φ, ρ) and

Q
s(1)
j (φ, ρ) are, respectively, replaced by R̃(0)

u (ρ), R̃(1)
u (ρ), Q

+(0)
j (φ, ρ) and Q

+(1)
j (φ, ρ). In

the calculations, we used εd = 1, εm = −20, t0 = 0 and H0 = 1, as in figure 7. The
electric-field-line patterns between parts (a) and (b) in the figure look the same. This behavior
can be understood from the following two facts: (i) the radial functions of the first order in
equations (212)–(214) are estimated to have much smaller absolute values than those of the
zeroth-order because of the small factor eκπ in equations (213) and (214), where κ is negative
and its specific values are shown in table 4 and (ii) the extended angular functions of the first
order in equations (196) and (203) are estimated to have small absolute values because they
are, respectively, inversely proportional to η̃1(ρ) and η̃2(ρ), which are much larger than unity
(e.g., η̃1(0) = η̃2(0) = 5.91 for the wedge angle 2α = 5◦ in our calculation conditions).
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Figure 8. Electric field lines of the superfocusing modes of SPPs in the metallic V-groove with the
wedge angle 2α = 5◦, obtained using the zeroth-order (a) and first-order (b) approximate solutions
calculated for ε1 = 1 and ε2 = −20. Geometrical dimensions of the horizontal and vertical axes
are ρ/λ0 = 1.

Therefore, figure 8 suggests that the zeroth-order approximate solution can be used in place
of the first-order approximate solution to show the electric-field-line patterns for the metallic
V-groove.

Finally, it is highly important to point out that the electric-field-line patterns in figures 7
and 8 also represent their respective contour lines of the magnetic scalar field; it can be clearly
understood from equation (226). Using equations (226)–(228), we could develop a computer-
aided animation of the field-pattern evolution that would give a more intuitive understanding
of the accumulation of superfocusing SPPs.

10. Wave numbers of superfocusing SPPs

Superfocusing modes of SPPs are briefly characterized by their wave numbers derived from
their radial functions. In sections 6.4 and 6.5, we find that the zeroth-order radial functions
for the metallic wedge and V-groove are described by the imaginary Bessel and modified
Whittaker functions, respectively. This holds true for the first-order radial functions (see
section 7.3 and 8.3 for the metallic wedge and V-groove, respectively) and the higher-
order ones (see appendices C.3 and D.3 for the second-order). By approximately expressing
the imaginary Bessel and modified Whittaker functions with exponential functions, we can
determine the wave numbers of superfocusing SPPs for the metallic wedge and V-groove. The
imaginary Bessel and modified Whittaker functions belong to the class of linear second-order
homogeneous ODEs, for which asymptotic expansions based on exponential functions are
categorized as the Liouville–Green approximation (also called the WKB approximation in
relation with connection formulas). The Liouville transformation (see chapter 4.5 in [41]) is
frequently used in the Liouville–Green approximation.
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For the imaginary Bessel functions H(1)
iν (νz) and H(2)

iν (νz), from section 5 in [48], we
have the Liouville–Green asymptotic approximation

H(l)
iν (νz) ≈ e±νπ/2

(
2

πν

)1/2

(1 + z2)−1/4 exp[±i(νξ̂ (z) − π/4)](1 + · · ·) (232)

where

ξ̂ (z) = (1 + z2)1/2 + ln

(
z

1 + (1 + z2)1/2

)
(233)

and the upper and lower signs correspond to the case l = 1 and l = 2, respectively. In
equation (232), by replacing z by ρk̂mp(ρ)/ν, we obtain an asymptotic approximation for
H(1)

iν (ρk̂mp(ρ)) and H(2)
iν (ρk̂mp(ρ)), which appear in the zeroth-order radial functions for the

metallic wedge (equations (116) and (117)). Therefore, the wave number of superfocusing
SPPs for the metallic wedge, k̂w(ρ), is given by

k̂w(ρ) = ν
d

dρ
ξ̂

(
ρk̂mp(ρ)

ν

)
. (234)

Substituting equation (233) into equation (234) and using the quasi-constant condition for
k̂mp(ρ) in equations (102) and (103), we find that

k̂w(ρ) = ν

ρ

√
1 +

{k̂mp(ρ)}2ρ2

ν2
, (235)

which can be expanded into a form appropriate for small ρ:

k̂w(ρ) ≈ ν

ρ
+

{k̂mp(0)}2ρ

2ν
+ · · · . (236)

Equation (236) clearly shows that the wave number of SPPs for the metallic wedge anomalously
increases closer to the wedge apex. By using equations (97) and (100), the behavior of k̂w(ρ)

for large values of ρ can be described by the asymptotic formula

k̂w(ρ) ∼ kp (ρ → ∞), (237)

which is exactly the starting point of the unified radial function described by equations (21)–
(23). Figure 9(a) shows k̂w(ρ)/kp as a function of ρ for specific wedge angles. This is a plot
of k̂w(ρ), calculated from equation (235) using equations (97) and (100), and divided by kp in
equation (23), where kpλ0 = 6.446. It is clear that the wave number of SPPs approaching the
wedge apex increases more rapidly for the shaper wedge angle.

For the modified Whittaker functions W−iκ,iν(−iνz) and Wiκ,iν(iνz) under the condition
−κ > ν > 0, according to appendix A, we have the Liouville–Green asymptotic approximation

W∓iκ,iν(∓iνz) ≈ 2−1/2 e−πκ/2ν∓i(ν+2κ)(ν − κ)±iν(2ν − κ)±iκ

×
(

z2 − 4 κ
ν
z + z

4z2

)− 1
4

exp[±iνξ̃ (z)](1 + · · ·), (238)

where

ξ̃ (z) = 1

2

(
z2 − 4

κ

ν
z + 4

) 1
2

+ ln

⎧⎨
⎩ z

2 − κ
ν
z +
(
z2 − 4 κ

ν
z + 4

) 1
2

⎫⎬
⎭

− κ

ν
ln

{
z − κ

ν
z +
(
z2 − 4

κ

ν
z + 4

) 1
2

}
. (239)
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Figure 9. Numerical calculations of the wave numbers of superfocusing SPPs, k̂w(ρ) and k̃w(ρ),
in the metallic wedge (a) and V-groove (b), respectively, as calculated by equations (235) and
(241), respectively. For convenience of explanation, k̂w(ρ)/kp and k̃w(ρ)/kp are shown, where
kp is the wave number of planar SPPs given in equation (23).

In equation (238), by replacing z by 2ρk̃mp(0)/ν, we obtain the asymptotic approximation for
W−iκ,iν(−2iρk̃mp(0)) and Wiκ,iν(2iρk̃mp(0)), which appear in the zeroth-order radial functions
for the metallic V-groove (equations (137) and (138)). Therefore, the wave number of
superfocusing SPPs for the metallic V-groove, k̃w(ρ), is given by

k̃w(ρ) = ν
d

dρ
ξ̃

(
2ρk̃mp(0)

ν

)
. (240)

Substituting equation (239) into equation (240), we find that

k̃w(ρ) = ν

ρ
B(ρ) +

κ2k̃mp(0){ν(1 + B(ρ)) − k̃mp(0)ρ}
νB(ρ){ν2B(ρ) + k̃mp(0)ρ(ν − κ)} , (241)

where

B(ρ) =
√

1 +
k̃mp(0)ρ{k̃mp(0)ρ − 2κ}

ν2
. (242)
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Note that equation (241) becomes equation (235) when setting κ = 0 and replacing tilde (˜)
by circumflex (ˆ), which are the correspondence conditions for superfocusing SPPs between
the metallic wedge and V-groove. Expanding equation (241) for small ρ, we find that

k̃w(ρ) ≈ ν

ρ
+

k̃mp(0)κ(2κ − ν)

ν2
+

{k̃mp(0)}2(10κ3 − 7κ2ν + ν3)ρ

2ν4
+ · · · , (243)

which is essentially different from equation (236) as it has a term ρ0(=1). The behavior of
k̃w(ρ) in equation (241) for large values of ρ is described by the asymptotic formula

k̃w(ρ) ∼ k̃mp(0) (ρ → ∞), (244)

in which k̃mp(0) given by equation (129) is nearly equal to kp (compare specific values of
k̃mp(0)λ0 in table 4 with kpλ0 = 6.446). Since the zeroth-order unified radial equation for the
metallic V-groove is roughly approximately described by the modified Whittaker equation,
equation (244) approximately satisfies k̃w(ρ) ∼ kp as ρ → ∞ described in equations (21)–
(23), which we assumed in order to introduce the unified radial equation. Figure 9(b) shows
k̃w(ρ)/kp as a function of ρ for specific wedge angles. This is a plot of equation (241)
calculated with equation (242) and divided by kp in equation (23). There are three appreciable
differences between parts (a) and (b): first, the wave numbers for SPPs in the metallic V-
groove increase farther from the wedge apex than those for the metallic wedge; second, the
former’s increase is slower than the latter’s; third, the former always has a larger wave number
at any point ρ. These behaviors are caused by the strengthening electric fields of SPPs for the
metallic V-groove, which have the even symmetry in the magnetic field. In contrast, SPPs for
the metallic wedge have a weakening electric field and the odd symmetry in the magnetic field.
The extraordinary enhancement of the electromagnetic field results from the accumulation of
SPPs due to the change from rapid to slow propagation, which is briefly characterized by the
increase in the wave number. Figure 9 shows that compared with the odd symmetry of the
metallic wedge, the even symmetry of the magnetic field for the metallic V-groove enables
more superfocusing SPPs to be accumulated. This implies that the symmetry of the magnetic
field plays a critical role in the accumulation of superfocusing SPPs.

11. Conclusions

We have studied the superfocusing modes of SPPs for the metallic wedge and V-groove by
solving the Helmholtz wave equation for the magnetic field by using quasi-separation of
variables in combination with perturbation methods. The zeroth- and first-order perturbation
equations for radial and extended angular functions were solved analytically. The second-
order perturbation solutions for the metallic wedge and V-groove are briefly described in
appendices C and D. For the metallic wedge and V-groove, we showed that the radial equations
of the zeroth order approximate the imaginary Bessel and modified Whittaker equations,
respectively; the extended angular functions of the zeroth and higher order have odd and even
symmetries, respectively, for reflection in the central plane of the wedge-shaped geometry. The
radial and extended angular equations of the first order, which are nonhomogeneous, linear,
second-order ODEs, were respectively solved by variation of parameters and Green’s functions.
In order to intuitively understand the zeroth- and first-order approximate solutions, we plotted
their electric-field-line patterns for the metallic wedge and V-groove. The wave numbers
of superfocusing SPPs were obtained as analytic formulas by using the Liouville–Green
asymptotic approximation. We found that for the same wedge angle and the permittivities
of metal and dielectric materials, the metallic V-groove has a much stronger superfocusing
effect than the metallic wedge. We believe that the quasi-separation of variables method for
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solving the Helmholtz wave equation is a powerful technique for theoretically understanding
the plasmonic superfocusing in various geometries.
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Appendix A. Asymptotic expansions for the modified Whittaker functions Wiκ,iµ(iz)
and W−iκ,iµ(−iz)

In this appendix, we study the asymptotic behavior of the modified Whittaker functions
Wiκ,iµ(iz) and W−iκ,iµ(−iz) for the case κ < 0, µ > 0 and z > 0 with the condition
κ/µ < −1, for which, as far as we know [42, 51, 54, 55], the asymptotic expansions have not
yet been considered. The definitions, characteristics and the connection formulas of Whittaker
functions are summarized in section 2 in [51]. The modified Whittaker differential equation

d2w

dz2
=
(

−1

4
+

κ

z
− µ2 + 1

4

z2

)
w (A.1)

is obtained from the Whittaker differential equation

d2w

dz2
=
(

1

4
− κ

z
+

µ2 − 1
4

z2

)
w (A.2)

by replacing κ , µ and z by iκ , iµ and iz, respectively. The modified Whittaker functions
Wiκ,iµ(iz) and W−iκ,iµ(−iz) satisfy equation (A.1). With the substitutions

x = z/µ, λ = κ/µ, (A.3)

equation (A.1) becomes

d2w

dx2
= {−µ2f (x) + g(x)}w, (A.4)

where

f (x) = x2 − 4λx + 4

4x2
(A.5)

and

g(x) = − 1

4x2
. (A.6)

The differential equation (A.4) is characterized by a regular singularity at x = 0, an
irregular singularity at x = ∞ and turning points at x = x1 and x = x2, where

x1 = 2λ − 2(λ2 − 1)
1
2 , x2 = 2λ + 2(λ2 − 1)

1
2 . (A.7)

For the present conditions

λ = κ/µ < −1, (A.8)

both x1 and x2 are real and negative, and f (x) is positive throughout 0 < x < ∞. By applying
the Liouville transformation of section 2 in chapter 10 of [42],

W =
(

dξ

dx

) 1
2

w,

(
dξ

dx

)2

= f (x), (A.9)
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equation (A.4) can be transformed into the form

d2W

dξ 2
= (−µ2 + ψ(ξ))W, (A.10)

where

ξ(x) =
∫

f 1/2(x) dx = 1

2
(x2 − 4λx + 4)

1
2 + ln

{
x

2 − λx + (x2 − 4λx + 4)
1
2

}

−λ ln{x − λx + (x2 − 4λx + 4)
1
2 }, (A.11)

W(ξ) = f 1/4(x)w(x) =
(

x2 − 4λx + 4

4x2

)1/4

w(x) (A.12)

and

ψ(ξ) = g(x)

f (x)
− 1

f 3/4(x)

d2

dx2

{
1

f 1/4(x)

}
= −x{x3 + 16λ + 4z(−4 + λ2)}

(x2 − 4λx + 4)3
. (A.13)

Note that the integration constant in equation (A.11) is taken to be zero for later convenience.
According to theorem 3.1 of chapter 10 [42], the transformed equation (A.10) has the

following solutions:

Wn,1(µ, ξ) = eiµξ

n−1∑
s=0

As(ξ)

(iµ)s
+ εn,1(µ, ξ), (A.14)

Wn,2(µ, ξ) = e−iµξ

n−1∑
s=0

(−1)s
As(ξ)

(iµ)s
+ εn,2(µ, ξ), (A.15)

where coefficients As are defined recursively by A0 = 1 and

As+1 = − x

(x2 − 4λx + 4)1/2

dAs

dx
− 1

4

∫ {x3 + 16λ + 4x(−4 + λ2)}
(x2 − 4λx + 4)5/2

As dx (s � 0)

. (A.16)

(Compare (2.09) and (2.10) of chapter 10 [42].) The integration constant in equation (A.16)
can be determined upon the condition As+1 → 0 as x → ∞. In the case of s = 1 in
equation (A.16), we have

A1 = − λx − 8λ2 + 6

24(−1 + λ2)(x2 − 4λx + 4)1/2
+

5(λx − 2)

6(x2 − 4λx + 4)3/2
. (A.17)

We now identify solutions (A.14) and (A.15) with the modified Whittaker functions by
using the asymptotic formula (see (11.05) of chapter 7 [42])

Wκ,µ(z) ∼ e−z/2zκ

(
z → ∞, |ph z| <

3

2
π

)
. (A.18)

First, we see that for some constant c1

W−iκ,iµ(−iµx) = c1

(
x2 − 4λx + 4

4x2

)− 1
4

Wn,1(µ, ξ), (A.19)

since both functions are the solutions of modified Whittaker equations and share the same
recessive properties as x → +i∞. By comparing both sides as x → +i∞, we find that

c1 = 2−1/2 e−πκ/2µ−i(µ+2κ)(µ − κ)iµ(2µ − κ)iκ . (A.20)
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In the same manner, we see that for some constant c2,

Wiκ,iµ(iµx) = c2

(
x2 − 4λx + 4

4x2

)− 1
4

Wn,2(µ, ξ), (A.21)

since both functions are also solutions to modified Whittaker equations and share the same
recessive properties as x → −i∞. By comparing both sides as x → −i∞, we find that

c2 = 2−1/2 e−πκ/2µi(µ+2κ)(µ − κ)−iµ(2µ − κ)−iκ . (A.22)

We see from equations (A.19) and (A.21) that under the time dependence e−iωt , W−iκ,iµ(−iz)
and Wiκ,iµ(iz) correspond to outgoing and incoming waves, respectively, for z → ∞.

Appendix B. Relation between Miκ,−iµ(iz) and W±iκ,iµ(±iz)

According to section 2 in [51], the standard solutions of the Whittaker differential
equation (A.2) are

Mκ,µ(z) ≡ e−z/2z1/2+µ · 1F1

(
1

2
+ µ − κ; 2µ + 1; z

)
, (B.1)

Wκ,µ(z) ≡ �(−2µ)

�
(

1
2 − µ − κ

)Mκ,µ(z) +
�(2µ)

�
(

1
2 + µ − κ

)Mκ,−µ(z), (B.2)

where 1F1 denotes the confluent hypergeometric function. Each Mκ,µ(z) and Wκ,µ(z) is a
many-valued function of z. Principal branches correspond to the range −π < phz � π .

From Kummer’s first formula [41, 51],

1F 1(α;β; z) = ez · 1F 1(β − α;β;−z), (B.3)

the defining equation (B.1) for Mκ,µ(z) can be written in another form:

Mκ,µ(z) = e+z/2z1/2+µ · 1F1
(

1
2 + µ + κ; 2µ + 1;−z

)
. (B.4)

It follows from equations (B.1) and (B.4) that

Mκ,µ(z · e±iπ ) = e±iπ(1/2+µ) · M−κ,µ(z). (B.5)

On the other hand, from equation (B.2), we immediately see that

Wκ,−µ(z) = Wκ,µ(z). (B.6)

Replacing κ and z by −κ and z · e±iπ , respectively, in equation (B.2), and applying
equation (B.4), we obtain

W−κ,µ(z · e±iπ ) = �(−2µ) e±iπ(1/2+µ)

�
(

1
2 − µ + κ

) Mκ,µ(z) +
�(2µ) e±iπ(1/2−µ)

�
(

1
2 + µ + κ

) Mκ,−µ(z). (B.7)

Solving simultaneous equations (B.2) and (B.7) for Mκ,µ(z) and Mκ,−µ(z), we find that

Mκ,−µ(z) = �(1 − 2µ) e±iπκ

�
(

1
2 − µ − κ

) W−κ,µ(z · e±iπ ) − �(1 − 2µ) e±iπ(1/2+µ+κ)

�
(

1
2 − µ + κ

) Wκ,µ(z). (B.8)

In particular, by considering the upper signs in equation (B.8), we obtain

Mκ,−µ(z) = �(1 − 2µ) eiπκ

�
(

1
2 − µ − κ

)W−κ,µ(z · eiπ ) − �(1 − 2µ) e−iπ(1/2+µ+κ)

�
(

1
2 − µ + κ

) Wκ,µ(z). (B.9)

Replacing κ , µ and z by iκ , iµ and z · e−iπ/2, respectively, in equation (B.9), we finally
arrive at the relation

Miκ,−iµ(iz) = �(1 − 2iµ) eπκ

�
(

1
2 − iµ − iκ

)W−iκ,iµ(−iz) + i
�(1 − 2iµ) eπ(µ+κ)

�
(

1
2 − iµ + iκ

) Wiκ,iµ(iz). (B.10)

Note that Wiκ,iµ(iz) and W−iκ,iµ(−iz) are a complex conjugate pair for κ , µ and z being real;
this fact can be proved easily using equations (B.2) and (B.6).
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Appendix C. Second-order perturbation solutions for the metallic wedge

Here, we solve problem P2 (72) for the metallic wedge. The solution procedure is much the
same as the one used for problem P1 (71) in section 7.

C.1. Extended angular functions of the second order for the metallic wedge

According to equations (60) and (61), we have the following second-order extended angular
equations for the odd symmetry:

∂2Q
−(2)
j (φ, ρ)

∂φ2
− {η̂j (ρ)}2Q

−(2)
j (φ, ρ) = −N

−(2)
j (φ, ρ), j = 1, 2 (C.1)

with nonhomogeneous terms

N
−(2)
j (φ, ρ) = ρ2 ∂2

∂ρ2
Q

−(1)
j (φ, ρ) +

2ρ2

R̂
(0)
u (ρ)

(
∂R̂(0)

u (ρ)

∂ρ

)
∂Q

−(1)
j (φ, ρ)

∂ρ

+
2ρ2

R̂
(0)
u (ρ)

(
∂R̂(1)

u (ρ)

∂ρ

)
∂Q

−(0)
j (φ, ρ)

∂ρ

− 2ρ2R̂(1)
u (ρ){

R̂
(0)
u (ρ)

}2

(
∂R̂(0)

u (ρ)

∂ρ

)
∂Q

−(0)
j (φ, ρ)

∂ρ

+ ρ
∂Q

−(1)
j (φ, ρ)

∂ρ
− ζ̂ (1)

u (ρ)Q
−(1)
j (φ, ρ) − ζ̂ (2)

u (ρ)Q
−(0)
j (φ, ρ), j = 1, 2

(C.2)

subject to the boundary conditions

Q
−(2)
j (α, ρ) = 0, j = 1, 2, (C.3)

Q
−(2)
j (0, ρ) = 0, Q

−(2)
j (π, ρ) = 0, j = 1, 2, (C.4)

1

ε1
lim

φ→α−0

∂

∂φ
Q

−(2)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

−(2)
2 (φ, ρ), (C.5)

where equation (C.3) is obtained from equation (63), equation (C.4) from the odd symmetry
characteristics and equation (C.5) from equation (64).

The nonhomogeneous differential equations (C.1) can be solved using the Green’s function
method. For the metallic region j = 1, by using the Green’s function in equation (157), we
have the solution

Q
−(2)
1 (φ, ρ) =

∫ α

0
Ĝ1(φ, φ′)N−(2)

1 (φ′, ρ) dφ′ (0 � φ � α), (C.6)

and hence

Q
−(2)
1 (φ, ρ) = − sinh{(φ − α)η̂1(ρ)}

η̂1(ρ)

∫ φ

0

sinh{φ′η̂1(ρ)}
sinh{αη̂1(ρ)} N

−(2)
1 (φ′, ρ) dφ′

− sinh{φη̂1(ρ)}
η̂1(ρ)

∫ α

φ

sinh{(φ′ − α)η̂1(ρ)}
sinh{αη̂1(ρ)} N

−(2)
1 (φ′, ρ) dφ′. (C.7)

For the dielectric region j = 2, by using the Green’s function in equation (164), we obtain the
solution

Q
−(2)
2 (φ, ρ) =

∫ π

α

Ĝ2(φ, φ′)N−(2)
2 (φ′, ρ) dφ′ (α � φ � π), (C.8)
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and hence

Q
−(2)
2 (φ, ρ) = − sinh{(π − φ)η̂2(ρ)}

η̂2(ρ)

∫ φ

α

sinh{(α − φ′)η̂2(ρ)}
sinh{(π − α)η̂2(ρ)} N

−(2)
2 (φ′, ρ) dφ′

− sinh{(α − φ)η̂2(ρ)}
η̂2(ρ)

∫ π

φ

sinh{(π − φ′)η̂2(ρ)}
sinh{(π − α)η̂2(ρ)} N

−(2)
2 (φ′, ρ) dφ′. (C.9)

C.2. Determination of the unified separation quantity of the second order for the metallic
wedge

The boundary condition (C.5) is used for determining the second-order unified separation
quantity ζ̂ (2)

u (ρ). Substituting equations (C.7) and (C.9) into the left and right sides of
equation (C.5), respectively, we find the simple relationship

1

ε1

∫ α

0
Q

−(0)
1 (φ′, ρ)N

−(2)
1 (φ′, ρ) dφ′ +

1

ε2

∫ π

α

Q
−(0)
2 (φ′, ρ)N

−(2)
2 (φ′, ρ) dφ′ = 0. (C.10)

Substituting equation (61) for s = odd (−) into equation (C.10) and rearranging terms,
we find for the second-order unified separation quantity that

ζ̂ (2)
u (ρ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
{

1
ε1

∫ α

0 Q
−(0)
1 (φ, ρ) ∂2

∂ρ2 Q
−(1)
1 (φ, ρ) dφ + 1

ε2

∫ π

α
Q

−(0)
2 (φ, ρ) ∂2

∂ρ2 Q
−(1)
2 (φ, ρ) dφ

}

+
{

2ρ2

R̂
(0)
u (ρ)

(
∂R̂

(0)
u (ρ)

∂ρ

)
+ ρ
}{ 1

ε1

∫ α

0 Q
−(0)
1 (φ, ρ) ∂

∂ρ
Q

−(1)
1 (φ, ρ) dφ

+ 1
ε2

∫ π

α
Q

−(0)
2 (φ, ρ) ∂

∂ρ
Q

−(1)
2 (φ, ρ) dφ

}

+

{
2ρ2

R̂
(0)
u (ρ)

(
∂R̂

(1)
u (ρ)

∂ρ

)
− 2ρ2R̂

(1)
u (ρ){

R̂
(0)
u (ρ)

}2

(
∂R̂

(0)
u (ρ)

∂ρ

)}{ 1
ε1

∫ α

0 Q
−(0)
1 (φ, ρ) ∂

∂ρ
Q

−(0)
1 (φ, ρ) dφ

+ 1
ε2

∫ π

α
Q

−(0)
2 (φ, ρ) ∂

∂ρ
Q

−(0)
2 (φ, ρ) dφ

}

−ζ̂ (1)
u (ρ)

{
1
ε1

∫ α

0 Q
−(0)
1 (φ, ρ)Q

−(1)
1 (φ, ρ) dφ + 1

ε2

∫ π

α
Q

−(0)
2 (φ, ρ)Q

−(1)
2 (φ, ρ) dφ

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
ε1

∫ α

0

{
Q

−(0)
1 (φ, ρ)

}2
dφ + 1

ε2

∫ π

α

{
Q

−(0)
2 (φ, ρ)

}2
dφ

,

(C.11)

where ε1 = εm and ε2 = εd are used for numerical calculations.

C.3. Unified radial function of the second order for the metallic wedge

The second-order unified radial equation (67) can be written using equation (100) as

∂2R̂(2)
u (ρ)

∂ρ2
+

1

ρ

∂R̂(2)
u (ρ)

∂ρ
+

(
{k̂mp(ρ)}2 +

ζ (0)
u (0)

ρ2

)
R̂(2)

u (ρ)

= − ζ̂ (1)
u (ρ)

ρ2
R̂(1)

u (ρ) − ζ̂ (2)
u (ρ)

ρ2
R̂(0)

u (ρ). (C.12)

From equation (69), we have the boundary condition

R̂(2)
u (ρ) = 0 (ρ → 0). (C.13)

The differential equation (C.12) subject to the boundary condition (C.13) can be solved in the
same manner as the first-order unified radial equation (174), so that we find the solution

R̂(2)
u (ρ) = R̂(2)

in (ρ) + R̂
(2)
out(ρ), (C.14)
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where

R̂(2)
in (ρ) = −π i

4
H(2)

iν (ρk̂mp(ρ))

×
∫ ρ

0

{
ζ̂ (1)
u (ρ ′)R̂(1)

u (ρ ′) + ζ̂ (2)
u (ρ ′)R̂(0)

u (ρ ′)
}
H(1)

iν (ρ ′k̂mp(ρ ′))
dρ ′

ρ ′ (C.15)

and

R̂
(2)
out(ρ) = π i

4
H(1)

iν (ρk̂mp(ρ))

×
∫ ρ

0

{
ζ̂ (1)
u (ρ ′)R̂(1)

u (ρ ′) + ζ̂ (2)
u (ρ ′)R̂(0)

u (ρ ′)
}
H(2)

iν (ρ ′k̂mp(ρ ′))
dρ ′

ρ ′ . (C.16)

The functions R̂(2)
in (ρ) and R̂

(2)
out(ρ) correspond to the incoming and outgoing waves,

respectively, for ρ → ∞.

Appendix D. Second-order perturbation solutions for the metallic V-groove

Here, we solve problem P2 (72) for the metallic V-groove. The solution procedure is much
the same as the one used for problem P1 (71) in section 8.

D.1. Extended angular functions of the second order for the metallic V-groove

According to equations (60) and (61), we have the second-order extended angular equations
for the even symmetry

∂2Q
+(2)
j (φ, ρ)

∂φ2
− {η̃j (ρ)}2Q

+(2)
j (φ, ρ) = −N

+(2)
j (φ, ρ), j = 1, 2 (D.1)

with nonhomogeneous terms

N
+(2)
j (φ, ρ) = ρ2 ∂2

∂ρ2
Q

+(1)
j (φ, ρ) +

2ρ2

R̃
(0)
u (ρ)

(
∂R̃(0)

u (ρ)

∂ρ

)
∂Q

+(1)
j (φ, ρ)

∂ρ

+
2ρ2

R̃
(0)
u (ρ)

(
∂R̃(1)

u (ρ)

∂ρ

)
∂Q

+(0)
j (φ, ρ)

∂ρ

− 2ρ2R̃(1)
u (ρ){

R̃
(0)
u (ρ)

}2

(
∂R̃(0)

u (ρ)

∂ρ

)
∂Q

+(0)
j (φ, ρ)

∂ρ

+ ρ
∂Q

+(1)
j (φ, ρ)

∂ρ
− ζ̃ (1)

u (ρ)Q
+(1)
j (φ, ρ) − ζ̃ (2)

u (ρ)Q
+(0)
j (φ, ρ), j = 1, 2

(D.2)

subject to the boundary conditions

Q
+(2)
j (α, ρ) = 0, j = 1, 2, (D.3)

∂

∂φ
Q

+(2)
j (φ, ρ)

∣∣∣∣
φ=0

= 0,
∂

∂φ
Q

+(2)
j (φ, ρ)

∣∣∣∣
φ=π

= 0, j = 1, 2, (D.4)

1

ε1
lim

φ→α−0

∂

∂φ
Q

+(1)
1 (φ, ρ) = 1

ε2
lim

φ→α+0

∂

∂φ
Q

+(1)
2 (φ, ρ) (D.5)

where equation (D.3) is obtained from equation (63), equation (D.4) from the even symmetry
characteristics and equation (D.5) from equation (64).
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The nonhomogeneous differential equations (D.1) can be solved using the Green’s
function method. For the dielectric region j = 1, by using the Green’s function in
equation (191), we have the solution

Q
+(2)
1 (φ, ρ) =

∫ α

0
G̃1(φ, φ′)N+(2)

1 (φ′, ρ) dφ′ (0 � φ � α), (D.6)

and hence

Q
+(2)
1 (φ, ρ) = − sinh{(φ − α)η̃1(ρ)}

η̃1(ρ)

∫ φ

0

cosh{φ′η̃1(ρ)}
cosh{αη̃1(ρ)} N

+(2)
1 (φ′, ρ) dφ′

− cosh{φη̃1(ρ)}
η̃1(ρ)

∫ α

φ

sinh{(φ′ − α)η̃1(ρ)}
cosh{αη̃1(ρ)} N

+(2)
1 (φ′, ρ) dφ′. (D.7)

For the metallic region j = 2, by using Green’s function in equation (198), we have the
solution

Q
+(2)
2 (φ, ρ) =

∫ π

α

G̃2(φ, φ′)N+(2)
2 (φ′, ρ) dφ′ (α � φ � π), (D.8)

and hence

Q
+(1)
2 (φ, ρ) = −cosh{(π − φ)η̃2(ρ)}

η̃2(ρ)

∫ φ

α

sinh{(α − φ′)η̃2(ρ)}
cosh{(π − α)η̃2(ρ)}N

+(1)
2 (φ′, ρ) dφ′

− sinh{(α − φ)η̃2(ρ)}
η̃2(ρ)

∫ π

φ

cosh{(π − φ′)η̃2(ρ)}
cosh{(π − α)η̃2(ρ)} N

+(1)
2 (φ′, ρ) dφ′. (D.9)

D.2. Determination of the unified separation quantity of the second order for the metallic
V-groove

The boundary condition (D.5) is used for determining the second-order unified separation
quantity ζ̃ (2)

u (ρ). Substituting equations (D.7) and (D.9) into the left and right sides of
equation (D.5), respectively, we find the simple relationship

1

ε1

∫ α

0
Q

+(0)
1 (φ′, ρ)N

+(2)
1 (φ′, ρ) dφ′ +

1

ε2

∫ π

α

Q
+(0)
2 (φ′, ρ)N

+(2)
2 (φ′, ρ) dφ′ = 0. (D.10)

Substituting equation (61) for s = even (+) into equation (C.10) and rearranging terms, we
find for the second-order unified separation quantity that

ζ̃ (2)
u (ρ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2
{

1
ε1

∫ α

0 Q
+(0)
1 (φ, ρ) ∂2

∂ρ2 Q
+(1)
1 (φ, ρ) dφ + 1

ε2

∫ π

α
Q

+(0)
2 (φ, ρ) ∂2

∂ρ2 Q
+(1)
2 (φ, ρ) dφ

}

+
{

2ρ2

R̃
(0)
u (ρ)

(
∂R̃

(0)
u (ρ)

∂ρ

)
+ ρ
}{ 1

ε1

∫ α

0 Q
+(0)
1 (φ, ρ) ∂

∂ρ
Q

+(1)
1 (φ, ρ) dφ

+ 1
ε2

∫ π

α
Q

+(0)
2 (φ, ρ) ∂

∂ρ
Q

+(1)
2 (φ, ρ) dφ

}

+

{
2ρ2

R̃
(0)
u (ρ)

(
∂R̃

(1)
u (ρ)

∂ρ

)
− 2ρ2R̃

(1)
u (ρ){

R̃
(0)
u (ρ)

}2

(
∂R̃

(0)
u (ρ)

∂ρ

)}{ 1
ε1

∫ α

0 Q
+(0)
1 (φ, ρ) ∂

∂ρ
Q

+(0)
1 (φ, ρ) dφ

+ 1
ε2

∫ π

α
Q

+(0)
2 (φ, ρ) ∂

∂ρ
Q

+(0)
2 (φ, ρ) dφ

}

−ζ̃ (1)
u (ρ)

{
1
ε1

∫ α

0 Q
+(0)
1 (φ, ρ)Q

+(1)
1 (φ, ρ) dφ + 1

ε2

∫ π

α
Q

+(0)
2 (φ, ρ)Q

+(1)
2 (φ, ρ) dφ

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
ε1

∫ α

0

{
Q

+(0)
1 (φ, ρ)

}2
dφ + 1

ε2

∫ π

α

{
Q

+(0)
2 (φ, ρ)

}2
dφ

,

(D.11)

where ε1 = εd and ε2 = εm are used for numerical calculations. Note that equation (D.11)
becomes equation (C.11) by replacing even (+) by odd (−) and tilde (˜) by circumflex (ˆ).
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D.3. Unified radial function of the second order for the metallic V-groove

According to equations (121)–(125), the second-order unified radial equation (67) roughly
approximates to

∂2R̃(2)
u (ρ)

∂ρ2
+

1

ρ

∂R̃(2)
u (ρ)

∂ρ
+

(
{k̃mp(ρ)}2 +

ν2q1

ρ
+

ν2

ρ2

)
R̃(2)

u (ρ)

= − ζ̃ (1)
u (ρ)

ρ2
R̃(1)

u (ρ) − ζ̃ (2)
u (ρ)

ρ2
R̃(0)

u (ρ). (D.12)

From equation (69), we have the boundary condition

R̃(2)
u (ρ) = 0 (ρ → 0). (D.13)

The differential equation (D.12) subject to the boundary condition (D.13) can be solved in the
same manner as the first-order unified radial equation (174), so that we find the solution

R̂(2)
u (ρ) = R̂(2)

in (ρ) + R̂
(2)
out(ρ), (D.14)

where

R̃(2)
in (ρ) = −ieκπρ−1/2Wiκ,iν(2iρk̃mp(0))

∫ ρ

0

{
ζ̃ (1)
u (ρ ′)R̃(1)

u (ρ ′) + ζ̃ (2)
u (ρ ′)R̃(0)

u (ρ ′)
}

× W−iκ,iν(−2iρ ′k̃mp(0))
dρ ′

2k̃mp(0)(ρ ′)3/2
(D.15)

and

R̃
(2)
out(ρ) = ieκπρ−1/2W−iκ,iν(−2iρk̃mp(0))

∫ ρ

0

{
ζ̃ (1)
u (ρ ′)R̃(1)

u (ρ ′) + ζ̃ (2)
u (ρ ′)R̃(0)

u (ρ ′)
}

× Wiκ,iν(2iρ ′k̃mp(0))
dρ ′

2k̃mp(0)(ρ ′)3/2
. (D.16)

The functions R̃(2)
in (ρ) and R̃

(2)
out(ρ) correspond to the incoming and outgoing waves,

respectively, for ρ → ∞.
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